

Genomic prediction using high-density SNP markers in Nordic Holstein and Red (RDC)

Guosheng Su¹, Rasmus F. Brøndum¹, Peipei Ma¹ Bernt Guldbrandtsen¹, Gert P. Aamand², Mogens S. Lund¹

¹Department of Molecular Biology and Genetics, Aarhus University, Denmark ²Nordic Cattle Genetic Evaluation, DK-8200 Aarhus N, Denmark

Background

Expect stronger LD between genes and markers with HD markers
Expect to get more accurate genomic predictions using HD markers
However, simulations with large number of QTL show no clear
benefit from using HD markers

Objective

Investigate accuracy of genomic predictions in Nordic Holstein and RDC using imputed HD markers (770k)

Populations

Nordic bulls with genotype (50k and imputed 770k) and de-regressed proofs (DRP)

Holstein:	4539
RDC:	4403

Training data: animals born before 2001-10-01 Test data: animals born after 2001-10-01

Traits: protein, fertility, udder health

Marker data

50 k data: original 50k data with some markers missing

imputed 50k data: missing markers in 50k were imputed using Beagle

Imputed HD data: 50k data were imputed to HD data using Beagle

- Holstein: based on 557 HD genotyped bulls (EuroGenomics)
- RDC: based on 706 HD genotyped bulls
- After imputation, delete the markers in complete LD with preceding locus.
- About 500k markers used for genomic prediction

Statistical Model

- 1. GBLUP
- 2. Bayesian mixture model with two normal distributions Prior: π = 20% for 50k data π = 2% for HD data

The priors were chosen according to the analysis with various $\boldsymbol{\pi}$

Results

Allele error rate of imputation

Breed	N_ref	N_test	Error rate %			
Holstein	457	100	0.77			
RDC	556	150	0.96			
	DNK: 1.75%, SWE: 0.59%, FIN: 0.54%					

Validation procedure:

- Test data were creared by deleting the markers not in 50k chip
- Imput those markers
- Allele error rate = number of wrong alleles / total number of imputed alleles

Reliability of DGV in Holstein

Trait	N	GBLUP			Bayesian mixture		
		50k	50k _{imp}	HD	50k	50k _{imp}	HD
Protein	1395	0.425	0.426	0.429	0.435	0.434	0.440
Fertility	1378	0.404	0.403	0.413	0.406	0.406	0.416
Udder	1461	0.370	0.372	0.370	0.375	0.376	0.376
health							
Average	1411	0.400	0.400	0.404	0.405	0.405	0.410

Reliability of DGV using HD is 0.5% higher than 50k
Imputation in 50k has no effect in this population
Bayesian mixture reliability is 0.5% higher than GBLUP

Regression of DRP on DGV in Holstein

Trait	N	GBLUP			Mixture			
		50k	50k _{imp}	HD	50k	50k _{imp}	HD	
Protein	1395	0.853	0.847	0.863	0.855	0.845	0.862	
Fertility	1378	0.972	0.963	0.994	0.968	0.958	0.996	
Udder	1461	0.952	0.933	0.946	0.948	0.927	0.946	
health								
Average	1411	0.926	0.914	0.934	0.924	0.910	0.935	

> HD reduces prediction bias slightly

Reliability of DGV in RDC

Trait	N	GBLUP			Bayesian mixture		
		50k	50k _{imp}	HD	50k	50k _{imp}	HD
Protein	923	0.346	0.358	0.358	0.346	0.357	0.359
Fertility	940	0.297	0.293	0.304	0.299	0.296	0.307
Udder	978	0.244	0.246	0.257	0.243	0.248	0.259
health							
Average	947	0.296	0.299	0.306	0.296	0.300	0.308

>50k_{imp} is better than 50k for protein

> Bayesian mixture not superior over GBLUP in this population

Reliability from HD is 1.2% higher than 50k, 0.8% higher than 50k_{imp}

Regression of DRP on DGV in RDC

Trait	N	GBLUP			Mixture		
		50k	50k _{imp}	HD	50k	50k _{imp}	HD
Protein	923	0.849	0.875	0.877	0.835	0.864	0.877
Fertility	940	0.934	0.939	0.980	0.933	0.940	0.980
Udder	978	0.851	0.854	0.872	0.839	0.846	0.870
health							
Average	947	0.878	0.889	0.910	0.869	0.883	0.909

50k_{imp} reduces prediction bias for protein
HD reduces prediction bias for all traits

Why only small extra gain by using HD SNP?

-- Is the advantage of increasing LD offset by increasing number of unknowns?

-- Is imputation error rate higher than that in validation?

- Small extra gain by increasing markers from 50k to 500k (770k chip).
- ➢More sophisticated methods and models are needed to get full benefit from HD markers for genomic prediction