

A recipe for multiple trait deregression

I. Strandén and E.A. Mäntysaari

MTT Agrifood Research Finland
Biometrical Genetics
31600 Jokioinen

Ismo.Stranden@mtt.fi

Why this paper

- Original idea: Deregression into existing BLUP software
- Easy to use
- Get all benefits from existing software
- Easy to program
- Deregression convergence
- Convergence can be accelerated?
- Many methods to choose

Base deregression equation system

Unknowns

Base deregression equation system

Unknowns
$\left[\begin{array}{cccc}\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{R}^{-1} \mathbf{X} & \mathbf{R}^{-1}+\mathbf{A}^{b b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{b a} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{b g} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{a b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{a a} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{a g} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{g b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{g a} \otimes \mathbf{G}_{0}^{-1} & \left(\mathbf{A}^{g g}+\mathbf{I}\right) \otimes \mathbf{G}_{0}^{-1}\end{array}\right]\left[\begin{array}{c}\hat{\boldsymbol{\mu}} \\ \hat{\mathbf{t}}_{b} \\ \hat{\mathbf{t}}_{a} \\ \hat{\mathbf{g}}\end{array}\right]=\left[\begin{array}{c}\mathbf{r}_{\mu} \\ \mathbf{r}_{b} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]$
b: Bulls with known EBVs (\mathbf{a}_{b}) $\hat{\mathbf{t}}_{b}=\mathbf{a}_{b}-\mathbf{X} \hat{\boldsymbol{\mu}}$
Relationship: $\quad \mathbf{r}_{b}=\mathbf{R}^{-1} \quad \mathbf{y}_{\mu}=\mathbf{X}^{\prime} \mathbf{r}_{b}$
Deregressed EBVs g : Random genetic groups

Block solving strategy: Step 1

Use current values

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} & \mathbf{0} \\
\mathbf{R}^{-1} \mathbf{X} & \mathbf{R}^{-1}+\mathbf{A}^{b b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{b a} \otimes \mathbf{G}_{0}^{-1} \\
\mathbf{0} & \mathbf{A}^{a b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{a a} \otimes \mathbf{G}_{0}^{-1} \\
\mathbf{0} & \mathbf{A}^{g b} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{g a} \otimes \mathbf{G}_{0}^{-1}
\end{array}\right.} \\
& b \text { Bulls with known EBVs (ab) }
\end{aligned} \quad a: \text { Ances } ~ 又 ~\left[\begin{array}{l}
\end{array}\right.
$$

$\mathbf{A}^{a a} \otimes \mathbf{G}_{0}^{-1}$
$\mathbf{A}^{g a} \otimes \mathbf{G}_{0}^{-1}$
a : Ancestors to bulls with known EBVs g : Random genetic groups

Solve for ancestors to bulls with known EBV and genetic groups
Needs solving a linear system of equations

Block solving strategy: Step 2

$\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}$

$$
\mathbf{R}^{-1} \mathbf{X} \quad \mathbf{R}^{-1}+\mathbf{A}^{b b} \otimes \mathbf{G}_{0}^{-1} \quad \mathbf{A}^{b a} \otimes \mathbf{G}_{0}^{-1}
$$

0

$$
\mathbf{A}^{a b} \otimes \mathbf{G}_{0}^{-1}
$$

$$
\mathbf{A}^{g b} \otimes \mathbf{G}_{0}^{-1}
$$

b: Bulls with known EBVs ($\mathbf{a}_{\mathbf{b}}$)
a : Ancestors to bulls with known EBV\$
g : Random genetic groups

Calculate right-hand side
Needs coefficient matrix times vector product

Block solving strategy: Step 3

b: Bulls with known EBVs (ab)
a : Ancestors to bulls with known EBVs g : Random genetic groups

Calculate general mean: $\hat{\boldsymbol{\mu}}^{[k+1]}=\hat{\boldsymbol{\mu}}^{[k]}-\Delta^{[k]} \quad k=$ iteration number

$$
\Delta^{[k]}=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{r}_{\mu}^{[k+1]}-\mathbf{X}^{\prime} \mathbf{r}_{b}^{[k+1]}\right)
$$

Block solving steps

1. Solve \mathbf{t}_{a} and \mathbf{g}

Needs solving a linear system of equations
Use existing BLUP solver: PCG iteration
2. Calculate new right-hand side

Matrix times vector product
Available: operation needed by PCG iteration
3. Update general mean

Iterate steps 1 to 3 until convergence

Accelerate solving of general mean

- Update in step 3:

- Root finding method in update of general mean
- Use $\Delta^{[k]}$ as value for function at current general mean $\hat{\boldsymbol{\mu}}^{[k]}$
- Methods considered:
- None
- Bisection
- Secant
- Broyden

Acceleration by root finding methods

- Secant:

$$
\boldsymbol{\mu}_{i}^{[k+1]}=\boldsymbol{\mu}_{i}^{[k]}-\frac{\boldsymbol{\mu}_{i}^{[k]}-\boldsymbol{\mu}_{i}^{[k-1]}}{\Delta_{i}^{[k]}-\Delta_{i}^{[k-1]}} \quad \text { for each trait } i
$$

- Broyden: $\boldsymbol{\mu}^{[k+1]}=\boldsymbol{\mu}^{[k]}-\mathbf{J}^{-1[k]} \boldsymbol{\Delta}^{[k]}$

$$
\begin{aligned}
\mathbf{J}^{-1[k]} & =\mathbf{J}^{-1[k-1]}+\frac{\boldsymbol{\delta}^{[k]}-\mathbf{J}^{-1[k-1]} \boldsymbol{\Delta}^{[k]}}{\boldsymbol{\delta}^{[k]} \mathbf{J}^{-1[k-1]} \boldsymbol{\Delta}^{[k]}} \boldsymbol{\delta}^{[k]^{\prime}} \mathbf{J}^{-1[k-1]} \\
\boldsymbol{\delta}^{[k]} & =\boldsymbol{\mu}^{[k]}-\boldsymbol{\mu}^{[k-1]}
\end{aligned}
$$

- Extra computation due to acceleration is small

Block solving steps with acceleration

1. Solve \mathbf{t}_{a} and \mathbf{g}

Needs solving a linear system of equations
Use existing BLUP solver: PCG iteration
2. Calculate new right-hand side

Matrix times vector product
Available: operation needed by PCG iteration
3. Calculate function value at current general mean

$$
\boldsymbol{\Delta}^{[k]}=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right)^{-1}\left(\mathbf{r}_{\mu}^{[k+1]}-\mathbf{X}^{\prime} \mathbf{r}_{b}^{[k+1]}\right)
$$

4. Update general mean by acceleration method

Iterate steps 1 to 4 until convergence

Data

- Two data sets from a paper by Schaeffer (2001)
- Country A
- EBVs for 1st, 2nd, 3rd 305-d lactation protein yield
- 4 analyses: $1,1+2,1+2+3$ multiple trait, $1+2+3$ as single trait
- Country B
- EBVs for protein yield and somatic cell score (SCS)
- 4 analyses: protein, SCS, protein+SCS multiple trait, protein+SCS single trait

Results

Function value with different

 values of general mean, 305-d protein yield in country B

Iteration by different methods Country B, protein

Iteration	None	Bisection	Secant	Broyden
0	-8.333	-13.5	-8.333	-8.333
1	-8.287	10.75	-8.287	-8.287
2	-8.242	-1.375	4126.96	-4.748
3	-8.197	-7.438	-4.748	-4.748
4	-8.153	-4.406	-4.748	-
No. iterations	713	16	4	3

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secan		Broyden	
A	Lactation 1	138 (1656)	16 (191)	4	(48)	3	(36)
B	MT_{1+2}	154 (1849)	250 (3093)	8	(97)	6	(73)
	MT_{1+2+3}	169 (2197)	269 (3497)	39		7	91)
	All, ST^{1}	138 (1794)	18 (233)	4	(51)	8	104)
	protein	713 (8556)	16 (192)	4	(49)	3	(36)
	SCS	149 (1506)	12 (128)	3	(47)	3	(34)
	$\mathrm{MT}_{\text {protein }+\mathrm{SCS}}$	748 (8976)	444 (5329)	6	(73)	6	(72)
	All ST ${ }^{1}$	713 (8556)	16 (193)	4		6	(72)

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	$138(1656)$	$16(191)$	$4(48)$	$3 \quad(36)$
B	protein	$713(8556)$	$16(192)$	$4(49)$	3

Secant and Broyden methods are very good

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
	MT_{1+2}	154 (1849)	250 (3093)	8 (97)	6 73)
	MT_{1+2+3}	169 (2197)	269 (3497)	39 (506)	7 91)
B	protein	713 (8556)	16 (192)	4 (49)	3 (36)
	SCS	149 (1506)	12 (128)	3 (47)	3 (34)
	$\mathrm{MT}_{\text {protein }+\mathrm{SCS}}$	748 (8976)	444 (5329)	6 (73)	6 (72)

Secant is good, and Broyden methods is very good

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secant	Broyden	
A	Lactation 1	$138(1656)$	$16(191)$	$4(48)$	3	(36)
	MT $_{1+2}$	$154(1849)$	$250(3093)$	$8(97)$	$6 \quad(73)$	
	MT $_{1+2+3}$	$169(2197)$	$269(3497)$	$39(506)$	7	(91)
	All, ST 1	$138(1794)$	$18(233)$	$4(51)$	$8(104)$	
B	protein	$713(8556)$	$16(192)$	$4(49)$	3	(36)
	SCS	$149(1506)$	$12(128)$	$3(47)$	3	(34)
	MT $_{\text {protein }+ \text { SCS }}$	$748(8976)$	$444(5329)$	$6(73)$	$6 \quad(72)$	
	All ST 1	$713(8556)$	$16(193)$	$4(49)$	$6 \quad(72)$	

Secant is very good, and Broyden methods is good

Number of PCG iterations by analysis

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656	16 (191)	4 (48	3 36
	MT_{1+2}	154 (1849	250 (3093)	8 (97)	6 (73
	MT_{1+2+3}	$169(2197$	269 (3497)	39 (506	7 91
	All, ST^{1}	138 (1794	18 (233)	4 (51)	8 (104
B	protein	7138556	16 (192)	4 (49	3 36
	SCS	149 (1506	12 (128)	3 (47)	3 (34
	$\mathrm{MT}_{\text {protein }+\mathrm{SCS}}$	7488976	444 (5329)	6 (73)	$6 \quad 72$
	All ST ${ }^{1}$	7138556	16 (193)	4 (49	6 (72

Results follow the same pattern as number of solver calls

Practical experiences (real data)

- Acceleration has worked very well
- Convergence affected by definition of genetic groups
- The more groups the faster convergence
- Changes in group definition has only small effect on deregressed proofs (correlation)
- Variance is affected
- Random genetic groups essential

Conclusions

- Deregression using existing BLUP software
- Easy to implement
- Gives all advantages of the existing software
- User can start with deregression, and proceed to analyses with deregressed proofs easily:
- same pedigree, same variance components etc.
- Acceleration methods work very well
- No universally best among tested
- Broyden's method was best when there were high genetic correlations between traits
- Secant method was best when genetic correlations between traits were low

