

A recipe for multiple trait deregression

I. Strandén and E.A. Mäntysaari

MTT Agrifood Research Finland Biometrical Genetics 31600 Jokioinen

Ismo.Stranden@mtt.fi

Why this paper

- Original idea: Deregression into existing BLUP software
 - Easy to use
 - Get all benefits from existing software
 - Easy to program
- Deregression convergence
 - Convergence can be accelerated?
 - Many methods to choose

Base deregression equation system

Unknowns

a: Ancestors to bulls with known EBVs

Base deregression equation system

Unknowns

 $\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{R}^{-1}\mathbf{X} & \mathbf{R}^{-1} + \mathbf{A}^{bb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ba} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{bg} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{ab} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{aa} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ag} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{gb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ga} \otimes \mathbf{G}_{0}^{-1} & \left(\mathbf{A}^{gg} + \mathbf{I}\right) \otimes \mathbf{G}_{0}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \hat{\boldsymbol{t}}_{b} \\ \hat{\boldsymbol{t}}_{a} \\ \hat{\boldsymbol{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{\mu} \\ \mathbf{r}_{b} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

b: Bulls with known EBVs (\mathbf{a}_b) $\hat{\mathbf{t}}_b = \mathbf{a}_b - \mathbf{X}\hat{\mathbf{\mu}}$ *a*: Ancestors to bulls with known EBVs *g*: Random genetic groups

Relationship: $\mathbf{r}_b = \mathbf{R}^{-1}\mathbf{y}$

$$\mathbf{r}_{\mu} = \mathbf{X}' \mathbf{r}_{b}$$

Deregressed EBVs

Use current values

Block solving strategy: Step 1

 $\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{R}^{-1}\mathbf{X} & \mathbf{R}^{-1} + \mathbf{A}^{bb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ba} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{bg} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{ab} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{aa} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ag} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{gb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ga} \otimes \mathbf{G}_{0}^{-1} & \left(\mathbf{A}^{gg} + \mathbf{I}\right) \otimes \mathbf{G}_{0}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{\hat{\mu}} \\ \mathbf{\hat{t}}_{b} \\ \mathbf{\hat{t}}_{b} \\ \mathbf{\hat{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{\mu} \\ \mathbf{r}_{b} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

b: Bulls with known EBVs (ab)

a: Ancestors to bulls with known EBVs *g*: Random genetic groups

Solve for ancestors to bulls with known EBV and genetic groups

Needs solving a linear system of equations

Block solving strategy: Step 2

 $\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{R}^{-1}\mathbf{X} & \mathbf{R}^{-1} + \mathbf{A}^{bb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ba} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{bg} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{ab} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{aa} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ag} \otimes \mathbf{G}_{0}^{-1} \\ \mathbf{0} & \mathbf{A}^{gb} \otimes \mathbf{G}_{0}^{-1} & \mathbf{A}^{ga} \otimes \mathbf{G}_{0}^{-1} & \left(\mathbf{A}^{gg} + \mathbf{I}\right) \otimes \mathbf{G}_{0}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \hat{\boldsymbol{t}}_{b} \\ \hat{\boldsymbol{t}}_{a} \\ \hat{\boldsymbol{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{\mu} \\ \mathbf{r}_{b} \\ \hat{\boldsymbol{t}}_{a} \\ \hat{\boldsymbol{g}} \end{bmatrix}$

b: Bulls with known EBVs (ab)

a: Ancestors to bulls with known EBVs *g*: Random genetic groups

Calculate right-hand side

Needs coefficient matrix times vector product

Block solving strategy: Step 3

b: Bulls with known EBVs (ab)

a: Ancestors to bulls with known EBVs*g*: Random genetic groups

Calculate general mean: $\hat{\boldsymbol{\mu}}^{[k+1]} = \hat{\boldsymbol{\mu}}^{[k]} - \Delta^{[k]}$ k= iteration number $\Delta^{[k]} = \left(\mathbf{X'R}^{-1}\mathbf{X} \right)^{-1} \left(\mathbf{r}_{\mu}^{[k+1]} - \mathbf{X'r}_{b}^{[k+1]} \right)$

Block solving steps

1. Solve \mathbf{t}_a and \mathbf{g}

Needs solving a linear system of equations

- Use existing BLUP solver: PCG iteration

2. Calculate new right-hand side

- Matrix times vector product
 - Available: operation needed by PCG iteration
- 3. Update general mean

Iterate steps 1 to 3 until convergence

• Update in step 3:

- Root finding method in update of general mean
 - Use $\Delta^{[k]}$ as value for function at current general mean $\hat{\mu}^{[k]}$
- Methods considered:
 - None
 - Bisection
 - Secant
 - Broyden

• Secant:
$$\mu_i^{[k+1]} = \mu_i^{[k]} - \frac{\mu_i^{[k]} - \mu_i^{[k-1]}}{\Delta_i^{[k]} - \Delta_i^{[k-1]}}$$
 for each trait *i*

• Broyden: $\mu^{[k+1]} = \mu^{[k]} - J^{-1[k]} \Delta^{[k]}$

$$\mathbf{J}^{-1[k]} = \mathbf{J}^{-1[k-1]} + \frac{\mathbf{\delta}^{[k]} - \mathbf{J}^{-1[k-1]} \mathbf{\Delta}^{[k]}}{\mathbf{\delta}^{[k]'} \mathbf{J}^{-1[k-1]} \mathbf{\Delta}^{[k]}} \mathbf{\delta}^{[k]'} \mathbf{J}^{-1[k-1]}$$
$$\mathbf{\delta}^{[k]} = \mathbf{\mu}^{[k]} - \mathbf{\mu}^{[k-1]}$$

• Extra computation due to acceleration is small

1. Solve \mathbf{t}_a and \mathbf{g}

Needs solving a linear system of equations

- Use existing BLUP solver: PCG iteration

2. Calculate new right-hand side

- Matrix times vector product
 - Available: operation needed by PCG iteration
- 3. Calculate function value at current general mean $\Delta^{[k]} = \left(\mathbf{X'R}^{-1}\mathbf{X}\right)^{-1} \left(\mathbf{r}_{\mu}^{[k+1]} \mathbf{X'r}_{b}^{[k+1]}\right)$

4. Update general mean by acceleration method

Iterate steps 1 to 4 until convergence

Data

- Two data sets from a paper by Schaeffer (2001)
- Country A
 - EBVs for 1st, 2nd, 3rd 305-d lactation protein yield
 - 4 analyses: 1, 1+2, 1+2+3 multiple trait,

1+2+3 as single trait

- Country B
 - EBVs for protein yield and somatic cell score (SCS)
 - 4 analyses: protein, SCS, protein+SCS multiple trait, protein+SCS single trait

Results

Function value with different values of general mean, 305-d protein yield in country B

Iteration by different methods Country B, protein

Iteration	None	Bisection	Secant	Broyden
0	-8.333	-13.5	-8.333	-8.333
1	-8.287	10.75	-8.287	-8.287
2	-8.242	-1.375	4126.96	-4.748
3	-8.197	-7.438	-4.748	-4.748
4	-8.153	-4.406	-4.748	-
No. iterations	713	16	4	3

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
	MT_{1+2}	154 (1849)	250 (3093)	8 (97)	6 (73)
	$MT_{1 + 2 + 3}$	169 (2197)	269 (3497)	39 (506)	7 (91)
	All, ST^1	138 (1794)	18 (233)	4 (51)	8 (104)
В	protein	713 (8556)	16 (192)	4 (49)	3 (36)
	SCS	149 (1506)	12 (128)	3 (47)	3 (34)
	MT _{protein + SCS}	748 (8976)	444 (5329)	6 (73)	6 (72)
		713 (8556)	16 (193)	4 (49)	6 (72)

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
В	protein	713 (8556)	16 (192)	4 (49)	3 (36)

Secant and Broyden methods are very good

Number of BLUP solver calls by analysis (total number of PCG iterations)

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
	MT_{1+2}	154 (1849)	250 (3093)	8 (97)	6 (73)
	MT_{1+2+3}	169 (2197)	269 (3497)	39 (506)	7 (91)
В	protein	713 (8556)	16 (192)	4 (49)	3 (36)
	SCS	149 (1506)	12 (128)	3 (47)	3 (34)
	MT _{protein + SCS}	748 (8976)	444 (5329)	6 (73)	6 (72)

Secant is **good**, and Broyden methods is **very good**

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
	MT_{1+2}	154 (1849)	250 (3093)	8 (97)	6 (73)
	MT_{1+2+3}	169 (2197)	269 (3497)	39 (506)	7 (91)
	All, ST ¹	138 (1794)	18 (233)	4 (51)	8 (104)
В	protein	713 (8556)	16 (192)	4 (49)	3 (36)
	SCS	149 (1506)	12 (128)	3 (47)	3 (34)
	MT _{protein + SCS}	748 (8976)	444 (5329)	6 (73)	6 (72)
	All ST ¹	713 (8556)	16 (193)	4 (49)	6 (72)

Secant is very good, and Broyden methods is good

Number of PCG iterations by analysis

Country	Data	None	Bisection	Secant	Broyden
A	Lactation 1	138 (1656)	16 (191)	4 (48)	3 (36)
	MT_{1+2}	154 (1849)	250 (3093)	8 (97)	6 (73)
	MT_{1+2+3}	169 (2197)	269 (3497)	39 (506)	7 (91)
	All, ST ¹	138 (1794)	18 (233)	4 (51)	8 (104)
В	protein	713 (8556)	16 (192)	4 (49)	3 (36)
	SCS	149 (1506)	12 (128)	3 (47)	3 (34)
	$MT_{protein + SCS}$	748 (8976)	444 (5329)	6 (73)	6 (72)
		713 (8556)	16 (193)	4 (49)	6 (72)

Results follow the same pattern as number of solver calls

Practical experiences (real data)

- Acceleration has worked very well
- Convergence affected by definition of genetic groups
 - The more groups the faster convergence
- Changes in group definition has only small effect on deregressed proofs (correlation)
 - Variance is affected
- Random genetic groups essential

Conclusions

- Deregression using existing BLUP software
 - Easy to implement
 - Gives all advantages of the existing software
 - User can start with deregression, and proceed to analyses with deregressed proofs easily:
 - same pedigree, same variance components etc.
- Acceleration methods work very well
 - No universally best among tested
 - Broyden's method was best when there were high genetic correlations between traits
 - Secant method was best when genetic correlations between traits were low