Ranking at different evaluation runs Use of breeding values in practice

Gert Pedersen Aamand, NAV Guosheng Su and Anders C. Sørensen Århus University

Bulls

- We are used to EBVs based on progeny group with more than 100 daughters
 - Production 90% reliability
 - Mastitis, fertility 65-75% reliability

Bulls

- We are used to EBVs based on progeny group with more than 100 daughters
 - Production 90% reliability
 - Mastitis, fertility 65-75% reliability
- We have to get used to genomic EBVs based on DNA information only
 - Reliability for all traits reliability 30-50% when based on Nordic reference data

My definition:

- Medium reliability 30-60%
- High reliability > 60%

EBV what does it mean?

- The EBVs = the best estimate for the true breeding value (BV) of an animal
- The probability that the EBV is higher or lower than the true BV is the same

Reliability what does it mean?

- The reliability tells how accurate the EBV is estimated
- 100% = the true BV

- 90% the true BV can deviate a "bit" from the EBV
- 40% the true BV can deviate considerable from the EBV of an animal

True breeding values versus EBVs

EBV	+25 NTM							
Reliability	30%	40%	50%	60%	70%	80%	90%	95%
Min	+6	+7	+9	+11	+13	+15	+18	+20
Max	+44	+43	+41	+39	+37	+35	+32	+30
Medium reliabilities High reliabilities 5% of the changes will be outside min or max NAV								
Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation								

Intensive use of one bull

- High reliability the true BV of the bull is close to the EBV – we "know" quite well what we get – low risk
- Medium reliability the true BV of the bull can deviate quite a bit from the EBV – we do not "know" that well what we get – high risk – we can gain more if we are lucky or loose more if we are unlucky

Intensive use of a group (e.g. 6) of bulls

- High reliability the average true BV of group of bulls is very close to the average EBV – we "know" very well what we get – very low risk
- Medium reliability the average true BV of the group of bulls is close to the average EBV – we "know" quite well what we get – low risk

Ranking at different evaluation runs

Ranking at different evaluation runs - we get more information

- We know from progeny testing that EBVs can change when reliability increases from 70% to 80% due to increasing number of daughters
- Correlation between the EBV₇₀ and EBV₈₀ is
 0.94
- Standard error of difference EBV₈₀-EBV₇₀ is
 3.5-4.0 index point (note expectation of difference is 0)

ΝΔν

EBVs can change when we get more information

 Standard error of difference EBV₈₀-EBV₇₀ is 3.5-4.0 index point

Example

- EBV₇₀ = 110
- EBV₈₀ can be between 102 and 118!
 (5% outside)

EBVs with medium reliability – correlations change more - when get new/more information (10%)

Increase in reliability	From 40 to 50%	From 70 to 80%
Standard deviation on EBV2	8.5	10
Correlation EBV1,EBV2	0.89	0.94
Standard error change EBV2-EBV1	3.5-4.0	3.5-4.0
Min – max (mean 110)	102-118	102-118

What happened in March for Holstein correlation DGV_{old} -DGV_{new} = 0.834?

Several improvements introduced:

- Eurogenomics data increase reliability by about 0.13% correlation 0.874
- Model change correlation 0.967
- EBVs from updated routine run correlation 0.99
- Weighted vs. unweighted analysis correlation 0.99
- Expected correlation = 0.874*0.967*0.99*0.99 = 0.828
 NAV

Conclusion

- We got a lot of new information (euro genomics data) in the DGVs – results as expected
- Learning's:

NΔV

- Medium reliability on DGV we have to adjust our "eyes" used to "high" reliabilities
- Remember DGVs are under R&D not routine yet even though we use them in practice – we might get significant extra information by extra reference animals, HD chips, better methods!

Use of breeding values in practice

Variation in NTM among bulls

True breeding values versus EBVs

EBV	+25 NTM							
Reliability	30%	40%	50%	60%	70%	80%	90%	95%
True min	+6	+7	+9	+11	+13	+15	+18	+20
True max	+44	+43	+41	+39	+37	+35	+32	+30
	Medium reliabilities High reliabilities						S	
EBVs can deviate more from true BV with medium than high reliabilities								
Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation								

Use of a team of bulls

EBV	+25 NTM			
	1 bull	Mean of 5 bull	1 bull	
Reliability single bull	50%	50%	90%	
Reliability group		90%		
Min	+9	+18	+18	
Max	+41	+32	+32	

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Use a team of bulls

EBV	+25 NTM			
	1 bull	Mean of 7 bull	1 bull	
Reliability single bull	30%	30%	90%	
Reliability group		90%		
Min	+6	+18	+18	
Max	+44	+32	+32	

Risk can be reduced by using a team of bulls

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Conclusion

NAV

Medium reliabilities

- Do not focus on a single bull and his single EBVs, but use a group of bulls with high EBVs
- In practice avoid focus on a single Genvik plus bull and his EBVs, when he is used as bull sire and proven sire!

Medium reliabilities overall conclusions

- More information give more re ranking than we are used to with high reliabilities
- Higher risk by focusing on single bulls than with higher reliabilities – focus on a group