

GS CATTLE WORKSHOP

Genotyping strategy and reference population

- Effect of size of reference group (Esa Mäntysaari, MTT)
- Effect of adding females to the reference population (Minna Koivula, MTT)
- Value of using GS at herd level (Line Hjortø, VFL)
- Discussion

18:30 DINNER

Effect of size of reference group

Effect of adding females to the reference population

Esa Mäntysaari, Minna Koivula, Timo Knürr, Ismo Strandén,

MTT, Biotechnology and Food Research, Biometrical genetics

Contents

- Prediction of accuracy of genomic prediction R²
 - Genomic Model
 - Effect of number of reference bulls on R²
- Effect of adding genotyped females into reference population
 - Using single step evaluation and deregressed cow EBVs
- Conclusion:
 - How many cows are needed

- Several equations exist for predicting the accuracy of DGV
 - Daetwyler et al, 2008; Goddard, 2009; Hayes et al. 2009; Goddard et al. 2011;
 Meuwissen et al. 2013)
 - Generally reliability of prediction for the animals that have no phenotypes themselves:

$$R_{DGV}^{2} = w \frac{Nref * h^{2}}{Nref * h^{2} + Me}$$

where

- w is the proportion of genetic variance that can be predicted by genomic model
- Nref is the number of animals with genotypes and phenotypes
- h² is the prediction accuracy of the phenotypes
- Me is the number of haplotypes segregating in the population

- Several equations exist for predicting the accuracy of DGV
 - Daetwyler et al, 2008; Goddard, 2009; Hayes et al. 2009; Goddard et al. 2011;
 Meuwissen et al. 2013)
 - Generally reliability of prediction for the animals that have no phenotypes themselves:

$$R_{DGV}^{2} = w \frac{Nref * h^{2}}{Nref * h^{2} + Me}$$

where

- w is the proportion of model
- Nref is the number of a
- h² is the prediction acc
- Me is the number of has

N

Relative to the genetic structure of the trait and the genotyping tool, for example SNP density

omic

- Several equations exist for predicting the accuracy of DGV
 - Daetwyler et al, 2008; Goddard, 2009; Hayes et al. 2009; Goddard et al. 2011;
 Meuwissen et al. 2013)
 - Generally reliability of prediction for the animals that have no phenotypes themselves:

$$R_{DGV}^{2} = w \frac{Nref * h^{2}}{Nref * h^{2} + Me}$$

where

- w is the proportion model
- Nref is the number
- h² is the prediction
- Me is the number

Nref

In principal independent nonrelated animals (with the same amount of information genomic

- Several equations exist for predicting the accuracy of DGV
 - Daetwyler et al, 2008; Goddard, 2009; Hayes et al. 2009; Goddard et al. 2011;
 Meuwissen et al. 2013)
 - Generally reliability of prediction for the animals that have no phenotypes themselves:

$$R_{DGV}^{2} = w \frac{Nref * h^{2}}{Nref * h^{2} + Me}$$

where

- w is the proportion of model
- Nref is the number of a
- h² is the prediction acc
- Me is the number of has

 h^2

Accuracy of observation:

heritability or reliability

(with same amount of
information for any)

omic

- Several equations exist for predicting the accuracy of DGV
 - Daetwyler et al, 2008; Goddard, 2009; Hayes et al. 2009; Goddard et al. 2011; Meuwissen et al. 2013)
 - Generally reliability of prediction for the animals that have no phenotypes themselves:

$$R_{DGV}^{2} = w \frac{Nref * h^{2}}{Nref * h^{2} + Me}$$

where

- w is the proportion of model
- *Nref* is the number of a
- h² is the prediction acd

Me

Depends on genetic structure of trait, and population. Mostly related to effective population size N_e

Me is the number of h. Me = 2 Ne Lm / log(NeLm)

Ne =effective pop size

Lm = genome size

omic

- The prediction generally fits poorly to our data
 - Mäntysaari et al (now) suggest a correction that takes into account the dependencies within data

$$R_{DGV}^{2} = w \frac{Nref_{1} + \Delta(Nref - Nref_{1})}{Nref_{1} + \Delta(Nref - Nref_{1}) + Me/h^{2}}$$

where

- Δ (Nref) is a proportion of data increase that is independent from the smallest reference population level Nref₁
- else, as before

HOLSTEIN, example

Number of effective reference bulls

Assume:

- $h^2 = 0.85$
- Ne=100
- w = 0.75
- Δ Nref = 30%

HOLSTEIN, example

Number of effective reference bulls

Assume:

- $h^2 = 0.85$
- Ne=100
- w = 0.75
- Δ Nref = 30%

HOLSTEIN, example

Number of effective reference bulls

Assume:

- $h^2 = 0.85$
- Ne=100
- w = 0.75
- Δ Nref = 30%

Prediction of sire GBLUP accuracy

Empirical data from GBLUP control model run by Knürr et al. EAAP 2013

- Reduced data with 4250 training bulls
- 38194 SNPs
- DRPs received from NAV
- GBLUP model w. 10% polygenic

Prediction of sire GBLUP accuracy

Reduced reference data sets:

- Remove all the bulls w.out sons: Minimal reference set 351 bulls
- 2. From 3900 non-parents: use sampling 20,30,...,100% reference population size
 - 10 replicates for each size of reference population
- 3. Use each sample to estimate GBLUP for validation bulls

MILK

82 samples, the full model R² was 0.46

MILK

- 82 samples
- Second order polynomial fit shows clear curvature

Modified Daetwyler prediction fits well:

- Effective population size 155
- If base curve is fitted to 850 bulls (R²=0.32), each extra bull contributes only 33% more
- Suggests that asymptotic accuracy is R²=0.75

PROTEIN

Modified Daetwyler prediction fits well:

- Effective population size 155
- If base curve is fitted to 850 bulls (R²=0.30), each extra bull contributes only 25% more
- Suggests that asymptotic accuracy is R²=0.70

Modified Daetwyler prediction fits well:

- Effective population size 135
- If base curve is fitted to 850 bulls (R²=0.30), each extra bull contributes only 35% more
- Suggests that asymptotic accuracy is R²=0.65

	1000 reference bulls contribute %-units	Reference population to get R ² =0.55
Milk	2.22	8800
Protein	1.94	16000
Fat	1.86	14600

- The prediction model does not work well
- Only the milk equation is usable:
 - Increasing the validation R² from 0.46 to 0.55 would require 4400 new bulls genotyped
 - Or theoretically genotyping 10200 cows

Data sets and evaluation models:

- Nordic production test-day data from July 2013
 - 3.7 million cows with records
 - 4.9 million animals in the Nordic Red pedigree
- DRPs for cows with edc >0
 - DRP = μ + EBV + ε
 - Heritabilities
 - Milk 0.48
 - Protein 0.48
 - Fat 0.49
 - DRPs for 3,072,815 RDC cows

For one step and validation:

Reduced data I

- DRPs of young genotyped cows included
 - 2,947,546 million cow DRPs
 - 3137 genotyped cows in reference population
 - Daughters of validation bulls removed

Reduced data II,

- DRPs of genotyped bulldams excluded
- DRPs genotyped young cows excluded
- Daughters of validation bulls removed
 - 2,944,409 million cow DRPs
- Genotype data (September 2013)
 - 46943 markers
 - 9107 genotyped animals in Nordic Red pedigree
 - 5315 bulls and 3792 cows

Single step model with cow DRPs:

- Pedigree extracted for 9107 animals with genotypes
- $G^* = G_w^{-1} A_{22}^{-1}$
 - 1) A-1 constructed using full pedigree file with all animals
 - 2) **G** -matrix scaled with Σ2pq and ΣG_{ii} / ΣA_{ii}
 - a) 0.20 weight for polygenic A_{22} in G_w (Chistensen and Lund)
 - **b)** $G^* = 1.6^* G_w^{-1} 0.5^* A^{-1}$ (Mistzal), where w=0.10

Mean EDCs and DRPs ± SDs for genotyped reference cows and full cow DRP data

- Genotyped reference cows (n=3137)
 - Milk
 - 0.738 ± 0.26
 - 2112.81 ± 1357.20
 - Protein
 - 0.669 ± 0.26
 - 80.268 ± 46.86
 - Fat
 - 0.671 ± 0.28
 - 80.82 ± 60.51

- Full data
 - Milk
 - 0.971 ± 0.23
 - 653.89 ± 1416.67
 - Protein
 - 0.917 ± 0.25
 - 22.657 ± 50.84
 - Fat
 - 0.926 ± 0.27
 - 25.23 ± 62.01

Mean EDCs, DRPs and DYDs ± SDs for validation bulls and reference bulls

- Validation bulls (n= 769)
 - Milk
 - 18.83 ± 8.19
 - 2259.82 ± 615.36
 - 990.21 ± 330.37
 - Protein
 - 17.53 ± 7.94
 - 79.31 ± 17.92
 - 37.93 ± 9.85
 - Fat
 - 17.19 ± 7.86
 - 87.77 ± 23.94
 - 39.39 ± 12.12

- Reference bulls
 - Milk
 - 17.70 ± 116.47
 - 1159.15 ± 718.19
 - 393.31 ± 808.93
 - Protein
 - 17.03 ± 113.01
 - 36.41 ± 24.51
 - 14.02 ± 28.24
 - Fat
 - 16.82 ± 112.22
 - 41.84 ± 28.82
 - 14.85 ± 35.18

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R ²	b ₁	R²	b ₁	R²
PA	0.878	0.361	0.750	0.269	0.674	0.286
GEBV _{w80}	0.858	0.506	0.762	0.414	0.758	0.473
GEBV _{BullG_w80}	0.866	0.482	0.772	0.402	0.766	0.460
GEBV _{Misztal}	0.994	0.511	0.890	0.430	0.874	0.482
GEBV _{BullG_M}	0.968	0.488	0.876	0.419	0.874	0.472

Reduced Data I

- 769 candidate bulls, born 2005 2009
- DRPs of genotyped cows included
 - 3137 genotyped cows in reference population

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R²	b ₁	R²	b ₁	R²
PA	0.878	0.361	0.750	0.269	0.674	0.286
GEBV _{w80}	0.858	0.506	0.762	0.414	0.758	0.473
GEBV _{BullG_w80}	0.866	0.482	0.772	0.402	0.766	0.460
GEBV _{Misztal}	0.994	0.511	0.890	0.430	0.874	0.482
GEBV _{BullG_M}	0.968	0.488	0.876	0.419	0.874	0.472

Reduced Data I

- 769 candidate bulls, born 2005 2009
- DRPs of genotyped cows included
 - 3137 genotyped cows in reference population

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R²	b ₁	R²	b ₁	R²
PA	0.878	0.361	0.750	0.269	0.674	0.286
GEBV _{w80}	0.858	0.506	0.762	0.414	0.758	0.473
GEBV _{BullG_w80}	0.866	0.482	0.772	0.402	0.766	0.460
GEBV _{Misztal}	0.994	0.511	0.890	0.430	0.874	0.482
GEBV _{BullG_M}	0.968	0.488	0.876	0.419	0.874	0.472

Reduced Data I

- 769 candidate bulls, born 2005 2009
- DRPs of genotyped cows included
 - 3137 genotyped cows in reference population

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R ²	b ₁	R²	b ₁	R²
PA	0.894	0.364	0.778	0.273	0.724	0.289
GEBV _{w80}	0.870	0.491	0.784	0.409	0.784	0.461
GEBV _{BullG_w80}	0.882	0.491	0.794	0.409	0.802	0.466
GEBV _{Misztal}	1.012	0.501	0.926	0.428	0.894	0.473
GEBV _{BullG_M}	0.980	0.495	0.894	0.425	0.898	0.475

Reduced Data II

- 769 candidate bulls, born 2005 2009
- DRPs of genotyped cows and bulldams excluded

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R^2	B ₁	R²	b ₁	R ²
PA	-0.016	-0.003	-0.028	-0.004	-0.050	-0.003
GEBV _{w80}	-0.012	0.015	-0.022	0.005	-0.026	0.012
GEBV _{BullG_w80}	-0.016	-0.009	-0.022	-0.007	-0.036	-0.006
GEBV _{Misztal}	-0.018	0.010	-0.016	0.002	-0.002	0.009
GEBV _{BullG_M}	0012	-0.007	-0.018	-0.006	-0.024	-0.003

Difference = Reduced Data I - Reduced Data II

-Effect of DRPs of 3137 reference cows

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R²	B ₁	R²	b₁	R²
PA	-0.016	-0.003	-0.028	-0.004	-0.050	-0.003
GEBV _{w80}	-0.012	0.015	-0.022	0.005	-0.026	0.012
GEBV _{BullG_w80}	-0.016	-0.009	-0.022	-0.007	-0.036	-0.006
GEBV _{Misztal}	-0.018	0.010	-0.016	0.002	-0.002	0.009
GEBV _{BullG_M}	0012	-0.007	-0.018	-0.006	-0.024	-0.003

Difference = Reduced Data I - Reduced Data II

-Effect of DRPs of 3137 reference cows

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R^2	B ₁	R²	b ₁	R ²
PA	-0.016	-0.003	-0.028	-0.004	-0.050	-0.003
GEBV _{w80}	-0.012	0.015	-0.022	0.005	-0.026	0.012
GEBV _{BullG_w80}	-0.016	-0.009	-0.022	-0.007	-0.036	-0.006
GEBV _{Misztal}	-0.018	0.010	-0.016	0.002	-0.002	0.009
$GEBV_{BullG_{_M}}$	0012	-0.007	-0.018	-0.006	-0.024	-0.003

Difference = Reduced Data I - Reduced Data II

-Effect of DRPs of 3137 reference cows

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R^2	B ₁	R²	b ₁	R ²
PA	-0.016	-0.003	-0.028	-0.004	-0.050	-0.003
GEBV _{w80}	-0.012	0.015	-0.022	0.005	-0.026	0.012
GEBV _{BullG_w80}	-0.016	-0.009	-0.022	-0.007	-0.036	-0.006
GEBV _{Misztal}	-0.018	0.010	-0.016	0.002	-0.002	0.009
GEBV _{BullG_M}	0012	-0.007	-0.018	-0.006	-0.024	-0.003

Difference = Reduced Data I - Reduced Data II

-Effect of DRPs of 3137 reference cows

Conclusion 2: if genotyped cow DRP excluded, better to exclude also the genotypes

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

	Milk		Pro	Protein		at
	b ₁	R²	b ₁	R²	b ₁	R²
PA	0.878	0.361	0.750	0.269	0.674	0.286
GEBV _{w80}						
GEBV _{BullG_w80}	-0.008	-0.024	-0.010	-0.012	-0.002	-0.013
GEBV _{Misztal}						
GEBV _{BullG_M}	-0.026	-0.023	-0.014	-0.011	0.000	-0.010

Reduced Data I all genotypes - Bull genotypes only

- DRPs of genotyped cows included (Reduced Data I)
 - In Data I: 3137 genotyped cows in reference population

Conclusion: if genotyped cow DRP included, better to include also the genotypes

Regression of DYD to $GEBV_R$ or $EBV_R(PA)$

BIAS in Single step GBLUP can be reduced!

	Milk		Pro	Protein		at
	b ₁	R²	b ₁	R ²	b ₁	R ²
PA						
GEBV _{w80}						
GEBV _{BullG_w80}						
GEBV _{Misztal}	0.136	0.005	0.128	0.016	0.116	0.009
$GEBV_{BullG_M}$	0.102	0.006	0.104	0.017	0.108	0.012

Reduced Data I Misztal – w80

Results of including cows into reference

- For milk and fat the improvement in R² due to 3137 reference cows was substantial: 0.9-1.5 %-units
 - Furthermore,
 these additional 3137 cows genotyped would correspond 684 bulls
 - Each extra 4.3-4.6 cows would equal to extra bull
 - TO REACH R²=0.55 by increasing cows genotyped?
 - > 3137*(0.55-0.46)/0.015 = 18822

Conclusions

- Theory:
 - Using Daetwyler et al. (2008) increase in R² = 3 %-units / 1000 bulls
 - Using conservative Daetwyler increase in R² = 1.1 %-units /1000 bulls
 - Using conservative Daetwyler increase in R² = 1.4 %-units / 3000 cows
- Based on SS GBLUP (and milk)
 - Increase in validation R² = 1.5 %-units / 3137 cows
- Estimate of number of chromosome segments is different for different traits?
- Theoretical prediction of increase R² is relative to "information count" in data:
 If the h² is lower, the value of cow data is less
 when h²=0.10
 - Using Daetwyler increase in R² = 2.8 %-units / (4000♂→5000 ♂)
 - Using Daetwyler increase in R² = 1.4 %-units / (4000 $\circlearrowleft \rightarrow$ 4000 $\circlearrowleft +3000$?)

THANK YOU!