

Environmental traits and feed efficiency

Jan Lassen, Sophie van Vliet, Yvette de Haas & Peter Løvendahl

Quantitative Genetics and Genomics Centre Department of Molecular Biology and Genetics Aarhus University, Denmark

Wageningen University, Netherlands

The dilemma

- > 10 billion people in 2050 (~ 7,5 today)
- > BRIC with huge growth larger % of people in middle class
- > Western civilisation will hardly change
- > Fossil fuel will be on demand more biofuel
- > In 2020 EU will reduce green house gas with 20% compared to 1990
- > In 2050 we need to have doubled food production compared to 2010

Energy turnover in cow

METHANE

Methane - two stories

> Green house gas emission

Indicator of feed efficiency

Measuring methane for genetic analysis

- > Precise measurements in large numbers (+10000)
- > Respiration chambers is hardly the solution
- > A number of new approaches are being tested

Equipment for measuring in AMS

- 1. Sampling unit
- 2. Pump unit
- 3. Analyser FTIR (GASMET DX-4000, www.gasmet.fi)
- 4. computer + software

Good and bad

> High capacity

> Spot samples of biology

> Non invasive

- > No control of breath
- > Potential for other gasses > Expensive

Data on methane emission

- > 2104 cows with breath registrations from 15 herds
- > Measured over a week long period during milking (5-30 visits pr cow)
- > Measurement every 5 seconds
- > Phenotype = CH₄/CO₂
- > Weight data on 923 cows (Lely robots)
- > Feed intake on 103 cows (research farm)
- > Milk records on 2104 cows

Quantifying methane emissions

- > IPCC : PME (g/d) = **feed intake** (kg of DM/d) \times 18.4 (MJ/kg of DM)/0.05565 (MJ/g) \times 0.06 \times {1 + [2.38 **level of intake**] \times 0.04} (de Hass et al JDS 2012)
- > Heat: I/day = 5,6*weight^{0,75} + 22*ECM + 1.6⁻⁵*DCC³ * CH₄/CO₂ (Madsen et al LS 2010)
- > CH₄/CO₂: Ratio between methane and carbondioxide (Lassen et al JDS 2012, Madsen et al LS 2010)

Phenotypic correlations

	IPCC	Heat
Heat	0,74	
CH ₄ /CO ₂	0,70	0,84

Genetic model

CH _{4/} CO ₂	=	Mean	
		+ Herd	Fixed class
		+ Robot(Herd)	Fixed class
		+ Lact nr	Fixed class
		+ DIM	Fixed reg
		+ Wilmink DIM	Fixed reg
		+ Animal	Random
		+ Residual	Random

Genetic parameters

	h ²	R _g with milk
CH ₄ /CO ₂	0,19 ± 0,04	-0,44 ± 0,23
Milk	0,21 ± 0,06	

METHAGENE - EU COST ACTION

- > 4 year network project
- > Comparision of methods
- >Indicators
- > Data base
- > Exchange of personel
- > Workshops
- >ICAR, ASGGN

Methane data in Europe

Person	Country	Breed	Method	Approx. number of animals	Feed data
Yan Tianhai	UK	Hol	SF6/chamber	1000	Χ
Jan Lassen	DK	HOL	Sniffer	2500	
Eileen Wall	UK	HOL	Laser	200	X
Phil Garnsworthy	Ruminomics	HOL/RED	Greenfeed/sniffer	1000	(X)
Yan Tianhai	UK	BEEF	SF6/chamber	300	X
Gilles Renand	F	BEEF	Greenfeed	100	X
Yvette de Hass	NL	HOL	Sniffer	100	X
Enyew Negussie	SF	FAY	Sniffer	100	X
Phil Garnsworthy	UK	HOL	Sniffer	2000	
Britt Berglund	Nordic	HOL/JER/RED	Sniffer/greenfeed	500	Χ
Herman Swalve	D	HOL	laser	3000 (plan)	
Et al	Europe			1000	(X)
Total				~9000 (12000)	

FEED EFFICIENCY

Trait definition

- > RFI residual feed intake (intake expected intake)
- > FCR feed conversion rate (output/input)
- > Individual digestability
- > Nordic feed efficiency

Joint estimation of RFI, DMI, GAIN and LW

- > Random regression approach (Jensen, 2013)
- > LW and DMI data from bull calves on test station
- > GAIN estimated based on derivates of LW
- > RFI estimated based on Cont Dist of DMI given LW and GAIN
- > Applicable to dairy situation as well

Data from research farm Denmark (van Vliet et al., 2014)

<u>Total</u>		DMI	Yield	LW
	DMI	0.22	0.60	0.16
	Yield	0.68	0.23	0.07
	LW	0.59	0.06	0.50

Holstein	DMI	Yield	LW
DMI	0.31	0.65	0.14
Yield	0.71	0.22	0.07
LW	0.64	0.22	0.53

Jersey	DMI	Yield	LW
DMI	0.19	0.48	0.14
Yield	0.83	0.41	0.11
LW	0.51	-0.25	0.36

- > 464 Hol, 218 JER
- > Weekly phenotypes
- >35.000 reg HOL
- > 15.000 reg JER
- >SE ~0.05-0.2

$$\rightarrow$$
 r_q, r_e, h²

Global dry matter initiative

Table 1. Number of lactations and animals as well as the mean, genetic standard deviation, heritability and repeatability of dry matter intake in all countries (i.e., All countries) or each individual country.

Country	Lactations	Animals	Mean	SDg	h²	Repeatability
Cows						
All countries	10701	6953	19.7	1.13	0.34 (0.03)	0.66 (0.01)
Canada	411	202	22.2	1.01	0.19 (0.14)	0.46 (0.06)
Denmark	668	363	22.1	1.48	0.52 (0.12)	0.62 (0.04)
Germany	1141	1095	20.2	0.64	0.08 (0.06)	0.84 (0.05)
lowa	398	398	23.5	1.48	0.41 (0.14)	
Ireland	1677	827	16.7	0.88	0.41 (0.10)	0.64 (0.02)
Netherlands	2956	2241	21.4	1.15	0.39 (0.05)	0.54 (0.03)
UK	2840	1277	17.4	1.07	0.31 (0.06)	0.72 (0.02)
Wisconsin	507	447	25.3	0.61	0.11 (0.14)	0.68 (0.07)
Australia	103	103	15.6			
Heifers						
Australia		843	8.3	0.77	0.20 (0.11)	
New Zealand		941	7.6	0.66	0.34 (0.12)	

GENOMIC SELECTION

Small scale to large scale

- > Most females with methane phenotype is genotyped
- > Direct traits together with indicators
- > Method developement needed
- > Contract herds low density chip
- > Need for collaboration

Next step

> METHANE

- > Correlations to other traits
- > GWAS
- > COST, ICAR definition, validation, data collection and merger

> FEED EFFICIENCY

- > Nordic data merger
- > gDMI project
- > RUMEN data
 - > 2000 cows will be phenotyped and genotyped (~1000 now)
 - > RUMINOMICS EU project

> GENOMIC SELECTION

- > Small scale phenotyping to larger scale genomic prediction
- > Contract herds

Acknowledgement

- > The Independent Research Council | Technologi and Production
- > The Strategic Research Council
- > Viking Genetics
- > Danish Milk Levy Foundation