

Estimation of variance components for Nordic red cattle test-day model: Bayesian Gibbs sampler *vs.* Monte Carlo EM REML

M.H. Lidauer¹, P. Madsen², K. Matilainen¹, E.A. Mäntysaari¹, I. Strandén¹, R. Thompson³, J. Pösö⁴, J. Pedersen⁵, U.S. Nielsen⁵, J.-Å. Eriksson⁶, K. Johansson⁶, G.P. Aamand⁷

¹MTT Agrifood Research Finland
²Danish Institute of Agricultural Science
³Rothamsted Research, United Kingdom
⁴Faba Breeding, Finland
⁵The Danish Agricultural Advisory
⁶Swedish Dairy Association
⁷NAV Nordic Cattle Genetic Evaluation

Introduction

Joint Nordic yield evaluation

- Countries:
- Evaluation for each breed:
- Biological traits:
- Lactations:
- Model:

Denmark, Finland, Sweden Red Cattle, Holstein, Jersey milk, protein, fat 1, 2, 3, (3+ for Finland)

reduced rank multiple-trait random regression test-day model

Introduction

Re-estimation of variance components

- Currently used variance components derived from multiple-trait REML analyses (estimated in 1998 and 2001)
- New variance components should be from random regression variance component analyses
- Bayesian analysis left us uncertain about quality of parameter estimates (Madsen et al., 2008)

poor mixing properties for many variance components

Trace plot for daily heritability of 3rd lactation protein yield at days in milk 180

Introduction

REML by re-sampling

- Exact REML methods impossible for this size of analysis
- Re-sampling techniques for PEV calculation in REML algorithms (García-Cortés et al., 1992)
- Ongoing Ph. D. study on developing multivariate Monte Carlo REML algorithms (Kaarina Matilainen)
- A first beta-version is ready for testing

Objective

Estimation of random regression test-day model variance components by Monte Carlo EM REML, and compare estimates with those from Bayesian analysis

Data sets

	Finnish	Swedish	Red
	Ayrshire*	Red Breed	Danish Cattle
Cows with observations	19 709	19 928	19 857
Number of herds	130	75	60
Number of TD records	374 009	353 340	320 881
Animals in pedigree	31 255	30 082	28 333

* For Finnish Ayrshire protein and fat yields were only available every second test-day

- Test-day records on milk, protein and fat yield
- First three lactations
- Data size allows inference about differences in heritabilities for the three populations

Model for variance component analysis

9 traits

milk, protein and fat yield of 1st, 2nd and 3rd lactation

Fixed effects

- herd×2-years calving period
- calving age
- days carried calf
- Legendre polynomials + Wilmink term (e^{-0.04})
 - 2-years calving period: L0, L1, L2, L3 and W

Random effects

- herd×test-day
- Legendre polynomials + Wilmink term (e^{-0.04})
 - herd×2-years calving period: L1, L2 and W
 - non-genetic animal effect: L0, L1, L2 and W
 - additive genetic animal effect: L0, L1, L2 and W
- 12 residual classes (from DIM 8: 3× 2 weeks, 3× 3 weeks, 3× 7 weeks, 3× 5 weeks)
- Variance components
 - in total, 1971 variance components to be estimated for each breed

Bayesian inference

- Gibbs sampler implementation in the DMU package (Madsen & Jensen, 2008)
- Priors
 - Fixed effects
 - flat priors
 - Random effects
 - Wishart distributions
 - prior values from analysis with records from ~1000 cows
 - proper priors: degree of belief was dimension of covariance matrix + 2
- Chain length
 - >170 000 samples

Monte Carlo EM REML analysis

- Monte Carlo EM REML algorithm based on ideas of García-Cortés et al. (1992)
- Algorithm developed for multivariate analysis
 - Each REML round needs sums of squares from BLUP solutions of real and sampled data
 - 2 data sets were sampled in each REML round
 - BLUPs were solved by PCG (MiX99 package, Vuori et al., 2006)
- Detailed description will be given by Matilainen et al. (2009) at the forthcoming EAAP meeting

RESULTS

Post-Gibbs analysis

Effective sample size (Initial sequence estimators, Geyer 1992)

VC for		Swedish	Red
Random	Finnish	Red	Danish
Effect	Ayrshire	Breed	Cattle
herd test-day	6855.8	6460.7	3164.6
herd curve	2659.5	2942.8	2345.6
non- genetic	290.3	164.9	225.7
genetic animal	57.2	42.8	42.6
Residual	7231.5	7117.5	4752.7

Available samples

- Finnish Ayrshire: 269 720
- Swedish Red Breed: 246 840
- Red Danish Cattle: 189 800

Post-Gibbs analysis

- First 70 000 samples discarded
- From remaining chain every 20th sample used
 - \rightarrow Effective sample size
 - → posterior means

Convergence of Monte Carlo EM REML

Number of EM REML rounds to reach convergence

VC for		Swedish	Red
Random	Finnish	Red	Danish
Effect	Ayrshire	Breed	Cattle
herd test-day	164	131	159
herd curve	466	566	451
non- genetic	2075	2535	3000*
genetic animal	1576	1954	2397
Residual	1652	609	462

*converged to 1.7x10⁻⁸

Robust convergence behavior

 Estimates for co-variances between some additive genetic animal effect parameters converged slowly

→ same parameters had low effective sample size in the Bayesian analysis

3 example parameters

Genetic co-variances between milk 1, LO: & Protein 3, LO; & Milk 1, L2; & Fat 3, W.

Comparison of variance component estimates

- VC estimates were in good agreement when effective sample size was high in post-Gibbs analysis
- Significant differences were found for genetic animal effect co-variances which included a Wilmink term
- Some significant differences were found for Finnish Ayrshire milk yield parameter estimates

Genetic and phenotypic correlations

Correlations between days in milk 60 of 1st lactation protein yield and all other days in milk and traits given for Swedish Red Breed

Daily heritabilities

Swedish Red Breed

Daily heritabilities

Finnish Ayrshire

Daily heritabilities

Red Danish Cattle

Computing time

• 1 MC-EM REML round ~ 11 Gibbs sampler rounds

• Based on software available at the time of study

Computing time for Finnish Ayrshire analysis

- 1 Gibbs sampler round 1.51 min.
 - Total computing time for 269720 rounds: 282 days
- 1 MC-EM REML round 17.1 min.
 - Total computing time for 3000 EM REML rounds: 35 days

Conclusions

- Variance components estimated by Gibbs sampler or Monte Carlo EM REML were in good agreement
- Variance parameters having low effective sample size in the Gibbs sampler converged slowly in Monte Carlo EM REML
- Monte Carlo EM REML was superior in computing time and can become an alternative for large variance component analyses

Acknowledgement

Further development and implementation of Monte Carlo EM REML is part of a Ph.D. study financed by Rothamsted Research and MTT

