Finland, pioneer in health recording and breeding for health

Jukka Pösö
Faba Breeding
Breeding for yield increases health problems

- Strong antagonistic genetic associations
- Finnish Ayrshire:
 - 0.40 – 0.60 between yield and mastitis
 - 0.40 – 0.60 between yield and fertility disorders
- Health and fertility need to be included in breeding programme
Health as breeding objective

- Health problems cause economic losses
 - Large economic value in TMI
- Major reasons for involuntary culling
 - Mastitis & impaired fertility
- Animal welfare issues more important
 - Ethical aspects of breeding work
Low heritability

• Traits measured as 0/1
• BUT: large variation in daughter groups
 – Asmo Sale: less than 1% daughters treated for mastitis in 1st lactation
 – Worst bull: over 25 % daughters with mastitis
• Large daughter groups needed for reliable EBV
Somatic cell count

- Indicator trait for clinical mastitis
 - Easier to record (milk recording)
 - Higher heritability (10-15%)

- BUT
 - Genetic correlation to mastitis only ~ 0.60
 (i.e. same as between yield and mastitis)

- Best option: use both mastitis and SCC
Health recording in Finland

• Since 1982
• Veterinary made diagnoses & treatments
• Common data base
 – information on production, inseminations, health, conformation etc
• 2008 onwards: hoof trimming data
• Currently around 6 million obs
• 200 000 new health records per year
Health data used

- For management purposes
 - Health reports for farms
 - Reports for local veterinarians

- For breeding
 - Udder health
 - Fertility disorders
 - "other treatments" (mostly metabolic disorders)
Udder health evaluation

• Joint Nordic evaluation (NCGE)
• Clinical mastitis
 – Early mastitis in 1st lactation
 – Lactations 1-3
• Somatic cell count
 – Lactations 1-3
• Fore udder attachment & Udder depth
Daughter fertility evaluation

- Joint Nordic evaluation (NCGE)
- Several fertility measures
 - Heifers
 - Cows
- Fertility disorders
 - Lactations 1-3
Evaluation for other diseases

• Joint Nordic evaluation (2008 onwards)
• Subindex: other diseases
 – Reproductive disorders in early lactation
 – Reproductive disorders in late lactation
 – Metabolic disorders
 – Feet and leg disorders
 – Lactations 1-3
Finnish TMI

• Health traits included since 1990
 – Udder health
 – Daughter fertility
• Large genetic improvement in yield and conformation in Finnish Ayrshire
• At the same time
 – Slow improvement of udder health
 – No impairment in daughter fertility
Asmo Sale Et AAA 42802 C

Born: 22.01.2003, Jokioinen
Breeder: Mitt-Alkiokeskus
Color:
Animal ID: 7455118

<table>
<thead>
<tr>
<th>Trait</th>
<th>Daughters</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>159</td>
<td>92</td>
</tr>
<tr>
<td>Functional</td>
<td>102</td>
<td>85</td>
</tr>
<tr>
<td>Health</td>
<td>163</td>
<td>68</td>
</tr>
<tr>
<td>Conformation</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

Translation of breeding values to phenotypic values

Int.ID: FIN000000042802
Owner: Kaikkien kauteen yhteiset sonnit

Sire: K.Kelli AAA 40347 C
PGS: N.Vemen AAA 38824 C
PGD: Äty 2 1074146 AAA
Dam: Vega 50-1030867 AAA
MGS: Backgård AAA 40499 B
MDG: Vega 164 1030857A
MGG: Hydlsa AAA 39674 B

Total merit index: 23

<table>
<thead>
<tr>
<th>Trait</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk-kg</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat-%</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat-kg</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prot-%</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prot.kg</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistency</td>
<td>117</td>
<td>non-pers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICF</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFL (heifers)</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFL (cows)</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIS (heifers)</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIS (cows)</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRR (heifers)</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRR (cows)</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility treatments (1st lact.)</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility treatments (2nd lact.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility treatments (3rd lact.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Still birth sire</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Still birth mgs</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calving index (sire)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calving index (mgs)</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRR (male fertility)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.05.2008