From traditional EBVs to GEBVs - in Nordic and International evaluation

Gert Pedersen Aamand, NAV Esa Mäntysaari, MTT

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Abbreviations

DGV (SNP effects)

NAV

Direct Genomic Value

- EBV (phenotypic registrations)
 - Estimated breeding value

GEBV (SNP effects + phenotypic registrations)

Genomic Enhanched Breeding value

International estimation of breeding values

MACE – Multi Across Country Evaluation

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

National EBVs based on phenotypes

INTERBULL and genomic EBVs (GEBVs)

Goals:

ΝΔν

- IB want to make GEBVs usable across countries Challenges:
- Take genomic selection among young bulls into account – avoid possible selection bias and problems with INTERBULLs normal test criteria
- Avoid double counting of genomic information, if more countries deliver GEBVs for the same bulls

Distribution of young bulls EBVs without genomic selection

Distribution of young bulls EBVs without genomic and the same bulls EBV, when they get a progeny test

Distribution of young bulls EBVs with genomic

Distribution of young bulls EBVs after genomic

Distribution of young bulls EBVs after genomic

Young bulls – with genomic information Reliability about 50%

Which effect does it have on estimation of breeding values?

 Traditional without genomic selection of young bulls
 EBV-bull calf = ½ EBV-dam + ½ EBV-sire

With genomic selection of young bulls
 EBV-bull calf > ½ EBV-dam + ½ EBV-sire

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Which effect does it has on estimation of breeding values?

- Genomic selection ignored/unknown leads to bias in EBVs
- Genomic selection "destroy" normal assumptions in relation to validation of EBVs

NAV

Which effect does it have on EBVs?

- The challenge depends on:
 - Reliability of DGVs

NAV

Intensity of selection

What has to be done?

- Take genomic selection into account in estimation of EBVs
- Work is going on all over the world
- The problem is important 3-4 years ahead when the first genomic selected bulls get lactating daughters

Problems with MACE and genomic information

- Genomic information about the same bull can be included from more countries. The normal MACE will double count the genomic information – as to independent tests even though the same genomic information is used
- GMACE a method to avoid double counting of genomic information

NΔV

INTERBULL trend validation

Basis – 2 runs:

ΝΔν

- Run including all data
- Run including all data minus the last four years of data

 Compare genetic trend – has to be equal – it means EBVs for proven bulls has to be stabile when getting 2nd batch daughters

Nordisk Avlsværdivurdering

INTERBULL validation - genomic

Challenge 4 youngest birth years of bulls have only genomic information no daughters with data!

INTERBULL validation - genomic

Challenge 4 youngest birth years of bulls have only genomic information no daughters with data!

Basis – 2 runs:

ΝΔν

- Run including all data
- Run including all data minus the last four years of data
- Compare genetic trend has to be equal it means GEBVs has to be stabile when getting daughters

INTERBULLS plan for GMACE

Time schedule	What to do?
Autumn 2009	Set up validation criteria
December 2009	GMACE ready for use
December 2009	and GMACE pilot run
January-February 2010	Pilot run GMACE
March 2010	Discussion of GMACE results
May 2010	GMACE test run
August 2010	GMACE routine run
NAV	

NAV plans

NAV

- 1. Combine PA and DGV for young genomic tested animals (end 2009- start 2010)
- 2. Blend DGV in the traditional NAV evaluation for all animals (work started – end spring 2010)
- 3. Investigate possibilities to improve the methods further?(2009 201?)

NAV plans

 Change from unofficial DGVs and official EBV's (today) to official GEBVs (spring/summer 2010)

Participate in INTERBULL test run with GEBVs in Mai 2010

Critical point in relation to blending

Robustness of DGV

NAV

 Reliability of DGV – same for all animals/different from animal to animal?

Critical points in relation to GEBV

- Comparison of genomic tested one year old bulls and bulls with lactating daughters
 - Stability of DGV

- Reliability of DGV
- PA unbiased bull dams are critical

German INTERBULL paper 2009

Best use of conventional EBV of bull dams and combination with direct genomic values

Dr. Stefan Rensing, Erik Pasman, Fritz Reinhardt, Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden/Germany

German Interbull paper 2009

- Overestimation of parent average (PA) for highly selected young bulls at least for production traits is it obvious
 - Most probably due to over-estimated dam EBVs (preferential treatment)
- Question of unbiased PA has become new dimension in time of GEBVs. PA has high impact on combined genomic EBVs this high impact remains for longer time for animals without daughter information

German INTERBULL paper 2009

• SCC

NAV

- Difference PA-EBV = 0,0
- **Protein**
 - Difference EBV-PA =-16,1 kg
 - Difference EBV-PA-only sires= -1,7 kg
 Same results in Nordic countries

German INTERBULL paper 2009

- Bull dams own records for yield will lead to bias in PA and GEBV
- Critical for a fair comparison of genomic tested one year old bulls and bulls with lactating daughters!!

What to publish in Nordic countries?

 GEBVs – the future combination of information from DGV and EBV

Esa will tell you how it can be done

Summary international

- Ignoring of genomic selection in EBVs create bias
- Genomic selection means that normal assumption in estimation of BV do not hold any more
- **GMACE** in 2010

NAV

MACE has to continue

Summary – NAV plans

- NAV routine GEBV in 2010 assumptions:
 - Robust DGV

NAV

- Knowledge about reliability of DGV
- Bull dam information has to be looked at critically

Can it be fulfilled for all breeds?

Traditional MACE

NAV

We still need MACE, since INTERBULL EBVs are used to increase number of bulls in the reference-group to improve predictions formulas for DGVs – has to be improved constantly

INTERBULL and the future

Exchange of SNP information between countries for all relevant young bulls are more efficient than GMACE. It means:

 A Nordic GEBV bull gets highest reliability on US scale by using US predictions formulas directly to calculate US DGV

and

 A US bull get highest reliability on Nordic scale by using Nordic predictions formulas directly to calculate Nordic DGV

INTERBULL and future

INTERBULL's role:

- Short run GMACE for international EBVs and traditional MACE for prediction formulas
- Long run ??
 - INTERBULL host calculation of prediction formulas
 - or INTERBULL partly superfluous

NAV • or role of national organizations are changed ?

Bull dams in reference population

 Note: several countries has found that bull dams in reference population do not increase reliability of genomic solutions

Reason – presumably overestimation!

Although I belive that equally large reason is the low accuracy of female EBVs

- You concentrated more on genetic trend
- I see 2 other Interbull expectations:
 - The consistency of GEBVs compared to EBVs If the acuracy (i.e. STD(GEBV)) is not consistent with r2 of EBVs, then the regression of current EBVs on GEBVs minus 4 years is not valid
 - The general accuracy of GEBVs. As ITB has to "bless" the GEBVs to be usable in international trade, ITB has to approve the GEBVs accuracy. Currently only material that has r2 >0.5 can be exported. And there is no rule to judge that!

ΝΔν

Esa's own opinion: INTERBULL will have equally or more important role as a reference lab, even when countries will start more to calculate their own GEBVs -If countries would only import, then the "company vision" could be possible, but since they also want to export, a international reference organization is needed.

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation