

Heterogeneous Variance Adjustment in Across-Country Genetic Evaluation with Country-Specific Heritabilities

M.H. Lidauer¹, E.A. Mäntysaari¹, J. Pösö², J.-Å. Eriksson³, U.S. Nielsen⁴, G.P. Aamand⁵

¹MTT Agrifood Research Finland, ²Faba Service, Finland, ³Swedish Dairy Association, ⁴The Danish Agricultural Advisory, ⁵NAV Nordic Cattle Genetic Evaluation

- Across-country genetic evaluation
 - 1. Single trait approach
 - 2. Multiple trait approach but $r_{g across countries} = unity$
 - 3. Multiple trait approach with $r_{g \text{ across countries}} < unity$
- Approaches 1 and 2 yield one set of breeding values
- → how to ensure a homogeneous genetic variance across countries?

- Nordic random regression TDM for Red Cattle
 - Multiple trait approach but $r_{g \text{ across countries}} = 1.0$
 - Finnish Ayrshire, Red Danish Cattle, Swedish Red Breed

Session: Dairy cattle and buffalo breeding

Different variance components for each country (breed)

- Nordic random regression TDM for Red Cattle
 - Multiple trait approach but r_{g across countries} = 1.0
 - Finnish Ayrshire, Red Danish Cattle, Swedish Red Breed
 - Different variance components for each country (breed)

Estimated heritabilities compiled for 305-d yields

Trait	Milk			Protein			Fat		
Lactation	1	2	3	1	2	3	1	2	3
Finnish Ayrshire	0.38	0.33	0.31	0.33	0.32	0.31	0.35	0.34	0.33
Red Danish Cattle	0.42	0.35	0.34	0.38	0.35	0.35	0.39	0.35	0.34
Swedish Red Breed	0.44	0.33	0.34	0.43	0.34	0.35	0.43	0.34	0.37

Session: Dairy cattle and buffalo breeding

- Nordic random regression TDM for Red Cattle
 - Multiple trait approach but $r_{g \text{ across countries}} = 1.0$
 - Finnish Ayrshire, Red Danish Cattle, Swedish Red Breed
 - Different variance components for each country (breed)

Estimated heritabilities compiled for 305-d yields

Trait	Milk			Protein			Fat		
Lactation	1	2	3	1	2	3	1	2	3
Finnish Ayrshire	0.38	0.33	0.31	0.33	0.32	0.31	0.35	0.34	0.33
Red Danish Cattle	0.42	0.35	0.34	0.38	0.35	0.35	0.39	0.35	0.34
Swedish Red Breed	0.44	0.33	0.34	0.43	0.34	0.35	0.43	0.34	0.37

Session: Dairy cattle and buffalo breeding

Aim

- Estimation of genetic variances using Mendelian sampling deviations
- Calibration of the heterogeneous variance adjustment method to ensure homogeneous genetic variance across countries

Estimation of genetic variance from Mendelian sampling deviations

• $\hat{\sigma}_{a_t}^2$ estimated from a group of animals (Sullivan, 1999):

$$\hat{\sigma}_{a_t}^2 = \frac{1}{n_t} \sum_{k=1}^{n_t} d_k \left[\hat{m}_{kt}^2 + PEV(\hat{m}_{kt}) \right]$$

- n_t number of animals
- d_k is 2, 4/3, or 1 depending on known parents
- $\hat{m}_{kt} = EBV_{kt} \frac{1}{2}(EBV_{st} + EBV_{dt})$ Mendelian sampling deviation for animal k and trait t
- $PEV(\hat{m}_{kt})$ prediction error variance for animal k and trait t

Estimation of genetic variance from Mendelian sampling deviations

Monte Carlo sampling for PEV (Hickey et al., 2009)

Estimation of genetic variance from Mendelian sampling deviations

- Monte Carlo sampling for PEV (Hickey et al., 2009)
- Considering formulation:

$$PEV = \sigma_a^2 - [Var(\hat{u})/Var(u)]\sigma_a^2$$

Estimation of genetic variance from Mendelian sampling deviations

- Monte Carlo sampling for *PEV* (Hickey et al., 2009)
- Considering formulation:

$$PEV = \sigma_a^2 - [Var(\hat{u})/Var(u)]\sigma_a^2$$

• $\hat{\sigma}_a^2$ can be estimated for a sufficiently large animal group:

$$\hat{\sigma}_{a_t}^{2[q]} = \frac{1}{n_t} \sum_{k=1}^{n_t} d_k \hat{m}_{kt}^{2[q]} \left[\sum_{k=1}^{n_t} d_k \tilde{m}_{kt}^2 / \sum_{k=1}^{n_t} d_k \hat{\tilde{m}}_{kt}^2 \right]$$

- \hat{m}_{kt} Mendelian sampling deviation from the real data
- \tilde{m}_{kt} true Mendelian sampling deviation of the simulated data $\hat{\tilde{m}}_{kt}$ estimated Mendelian sampling deviation from the
- simulated data

Full model sampling to obtain \widetilde{m}_{ktr} and $\widetilde{\widetilde{m}}_{ktr}$

- Nordic Red Cattle yield evaluation data
 - 68 million test-day records on milk, protein and fat
 - 4.3 million animals

Full model sampling to obtain \widetilde{m}_{ktr} and $\widehat{\widetilde{m}}_{ktr}$

- Nordic Red Cattle yield evaluation data
 - 68 million test-day records on milk, protein and fat
 - 4.3 million animals
- Multiplicative reduced rank random regression TDM:

$$\mathbf{y}_{ti}\lambda_{ti} = \mathbf{X}_{ti}\mathbf{b}_t + \mathbf{T}_{ti}\mathbf{h}_t + \mathbf{Z}_{ti}\mathbf{a} + \mathbf{U}_{ti}\mathbf{p} + \mathbf{V}_{ti}\mathbf{w} + \mathbf{e}_{ti}$$

- \mathbf{y}_{ti} observations of trait t in stratum i
- λ_{i} multiplicative adjustment factor for stratum i
- \mathbf{b}_t , \mathbf{h}_t vector of fixed effects for trait t
- a,p,w add. genetic and non-add. genetic animal effects
- \mathbf{e}_{ti} random residuals

Full model sampling to obtain \widetilde{m}_{ktr} and $\widehat{\widetilde{m}}_{ktr}$

Following García-Cortés et al. (1992)

$$\bullet \, \widetilde{\mathbf{b}}_t = \mathbf{0}, \widetilde{\mathbf{h}}_t = \mathbf{0}$$

$$\bullet \, \widetilde{\mathbf{a}} = (\mathbf{L} \otimes \mathbf{T}_{\mathbf{a}}) \, \mathbf{x}_{\mathbf{n}_{\mathbf{a}} \mathbf{t}_{\mathbf{a}}}$$

$$\mathbf{\tilde{p}} = \left(\mathbf{I}_{n_{p}} \otimes \mathbf{T}_{p}\right) \mathbf{x}_{n_{p}t_{p}}, \quad \mathbf{\tilde{w}} = \left(\mathbf{I}_{n_{w}} \otimes \mathbf{T}_{w}\right) \mathbf{x}_{n_{w}t_{w}}$$

$$\bullet \ \widetilde{\mathbf{e}}_{\mathbf{j}} = \mathbf{P}_{\mathbf{j}} \mathbf{T}_{\mathbf{r}} \ \mathbf{x}_{\mathbf{t}_{\mathbf{r}}}$$

where L,T_a,T_p,T_w,T_r are Cholesky decompositions of A and of the corresponding VCV matrices,

and $\mathbf{x}_{n} \sim N(\mathbf{0}, \mathbf{I}_{n})$ are random samples from stand.N.D.

•
$$\tilde{\lambda}_{ti} = 1$$

Full model sampling to obtain \widetilde{m}_{ktr} and $\widetilde{\widetilde{m}}_{ktr}$

- Following García-Cortés et al. (1992)
 - $\bullet \, \widetilde{\mathbf{b}}_t = \mathbf{0}, \widetilde{\mathbf{h}}_t = \mathbf{0}$
 - $\bullet \, \widetilde{\mathbf{a}} = (\mathbf{L} \otimes \mathbf{T}_{\mathbf{a}}) \, \mathbf{x}_{\mathbf{n}_{\mathbf{a}} \mathbf{t}_{\mathbf{a}}}$
 - $\mathbf{\tilde{p}} = \left(\mathbf{I}_{n_{p}} \otimes \mathbf{T}_{p}\right) \mathbf{x}_{n_{p}t_{p}}, \quad \mathbf{\tilde{w}} = \left(\mathbf{I}_{n_{w}} \otimes \mathbf{T}_{w}\right) \mathbf{x}_{n_{w}t_{w}}$
 - $\bullet \ \widetilde{\mathbf{e}}_{\mathbf{j}} = \mathbf{P}_{\mathbf{j}} \mathbf{T}_{\mathbf{r}} \ \mathbf{x}_{\mathbf{t}_{\mathbf{r}}}$

where L, T_a, T_p, T_w, T_r are Cholesky decompositions of A and of the corresponding VCV matrices,

and $\mathbf{x}_{n} \sim N(\mathbf{0}, \mathbf{I}_{n})$ are random samples from stand.N.D.

- $\tilde{\lambda}_{ti} = 1$
- ... yields: $\widetilde{\mathbf{y}}_{ti}\widetilde{\lambda}_{ti} = \mathbf{X}_{ti}\widetilde{\mathbf{b}}_{t} + \mathbf{T}_{ti}\widetilde{\mathbf{h}}_{t} + \mathbf{Z}_{ti}\widetilde{\mathbf{a}} + \mathbf{U}_{ti}\widetilde{\mathbf{p}} + \mathbf{V}_{ti}\widetilde{\mathbf{w}} + \widetilde{\mathbf{e}}_{ti}$

Heterogeneity of genetic variance across countries

- Estimation of genetic variances
 - Applied to evaluation model which accounts for heterogeneous variance within traits only

Session: Dairy cattle and buffalo breeding

For each cow birth year group

Heterogeneity of genetic variance across countries

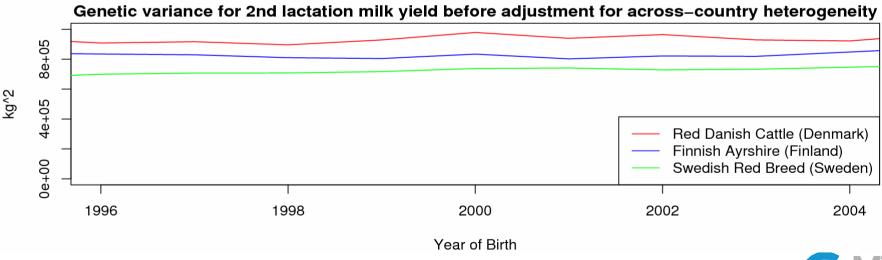
- Estimation of genetic variances
 - Applied to evaluation model which accounts for heterogeneous variance within traits only

Session: Dairy cattle and buffalo breeding

- For each cow birth year group
- Result
 - Genetic variances differ between countries up to 30%

Heterogeneity of genetic variance across countries

- Estimation of genetic variances
 - Applied to evaluation model which accounts for heterogeneous variance within traits only
 - For each cow birth year group
- Result
 - Genetic variances differ between countries up to 30%



Session: Dairy cattle and buffalo breeding

Calibration of heterogeneous variance adjustment method

- Multiplicative mixed model approach (Meuwissen et. al., 1996)
 - Scales all effects in the model in proportionality to the residual variance
 - Converges to a set of solutions, which fulfill:

$$n_{ti}\hat{\sigma}_{e_t}^2 = \mathbf{y}_{ti}^{\mathrm{T}}\lambda_{ti}\hat{\mathbf{e}}_{ti}$$
 where $\hat{\sigma}_{e_t}^2$ is the residual variance for trait t

Calibration of heterogeneous variance adjustment method

- Multiplicative mixed model approach (Meuwissen et. al., 1996)
 - Scales all effects in the model in proportionality to the residual variance
 - Converges to a set of solutions, which fulfill:

$$n_{ti}\hat{\boldsymbol{\sigma}}_{e_t}^2 = \mathbf{y}_{ti}^{\mathrm{T}} \lambda_{ti} \hat{\mathbf{e}}_{ti}$$

where $\hat{\sigma}_{e_t}^2$ is the residual variance for trait t

modified condition

$$n_{ti}\hat{\boldsymbol{\sigma}}_{e_t}^2\boldsymbol{\alpha}_t = \mathbf{y}_{ti}^{\mathrm{T}}\lambda_{ti}\hat{\mathbf{e}}_{ti}$$

where α_t is a calibration factor for trait t

Calibration of heterogeneous variance adjustment method

- Iterative procedure to obtain $\, {\cal C}_t \,$
 - initialize q=1, $\alpha_t^{[q]}=1.0$
 - Solve multiplicative random regression TDM

 - Estimate genetic variances $\hat{\sigma}_{a_t}^{2[q]}$ Update calibration factors $\alpha_{t.c}^{[q+1]} = \alpha_{t.c}^{[q]} \hat{\sigma}_{a_{t.BASE}}^{2[q]} / \hat{\sigma}_{a_{t.c}}^{2[q]}$ where c is either Finland or Denmark and BASE is Sweden
 - Repeat until differences in genetic SDs < +/- 1%

Calibration of heterogeneous variance adjustment method

- Iterative procedure to obtain $\, {\cal C}_t \,$
 - initialize q=1, $\alpha_{t}^{[q]}=1.0$
 - Solve multiplicative random regression TDM

 - Estimate genetic variances $\hat{\sigma}_{a_t}^{2[q]}$ Update calibration factors $\alpha_{t.c}^{[q+1]} = \alpha_{t.c}^{[q]} \hat{\sigma}_{a_{t.BASE}}^{2[q]} / \hat{\sigma}_{a_{t.c}}^{2[q]}$ where c is either Finland or Denmark and BASE is Sweden
 - Repeat until differences in genetic SDs < +/- 1%
- Animal groups for estimation of genetic variances
 - All cows born in 2002 to 2004
 - Finnish Ayrshire: 180 573
 - Red Danish Cattle: 50 067
 - Swedish Red Breed: 159 961

 One data sample was sufficient for sampling the mean prediction error variances for the three cow groups

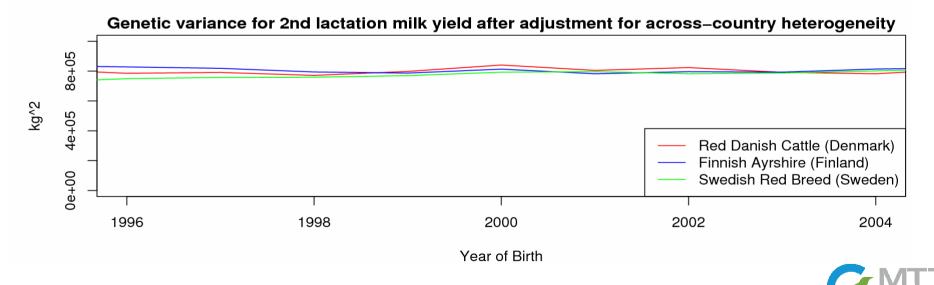
Session: Dairy cattle and buffalo breeding

Calibration factors converged after six calibration cycles

Range of calibration factors: 0.75 ... 1.38

- One data sample was sufficient for sampling the mean prediction error variances for the three cow groups
- Calibration factors converged after six calibration cycles

Range of calibration factors: 0.75 ... 1.38



Genetic standard deviations by trait and country (in kg for 305d yields)

Trait	Milk			Protein			Fat		
Lactation	1	2	3	1	2	3	1	2	3
Finnish Ayrshire	742	895	936	21.0	28.6	30.5	27.4	36.2	40.2
Red Danish Cattle	739	894	933	21.2	28.6	30.1	27.6	36.4	40.1
Swedish Red Breed	740	889	931	21.3	28.3	30.0	27.7	36.0	39.8

Genetic standard deviations by trait and country (in kg for 305d yields)

Trait	Milk			Protein			Fat		
Lactation	1	2	3	1	2	3	1	2	3
Finnish Ayrshire	742	895	936	21.0	28.6	30.5	27.4	36.2	40.2
Red Danish Cattle	739	894	933	21.2	28.6	30.1	27.6	36.4	40.1
Swedish Red Breed	740	889	931	21.3	28.3	30.0	27.7	36.0	39.8

Session: Dairy cattle and buffalo breeding

Correlations between EBVs with and without across-country calibration

Across all cows born 2002 – 2007: 0.9973 – 0.9990

Finnish Ayrshire: 0.9959 – 0.9988

Red Danish Cattle: 0.9987 – 0.9995

Swedish Red Breed: 0.9998 – 0.9999

Conclusions

- Estimation of genetic variance from Mendelian sampling deviations is useful for model development and validation
- Monte Carlo sampling for PEV requires one replicate only (one additional BLUP run) when mean PEV are needed

Session: Dairy cattle and buffalo breeding

- Calibration procedure yielded homogeneous genetic variances across countries
- And it is applicable for any heterogeneous variance adjustment method which scales the observations

THANK YOU

Acknowledgement

Nordic Cattle Genetic Evaluation NAV for co-financing the work and for providing the data

DANSK · KVÆG

