Use of health data in genetic evaluation and breeding

Gert Pedersen Aamand
Nordic Cattle Genetic Evaluation
Udkaersvej 15, DK-8200 Aarhus N, Denmark
e-mail: gap@landscentret.dk
Homepage: www.nordicebv.info
Use of health data in genetic evaluation and breeding

1. Introduction
2. Data collection
3. Genetic evaluation for health traits
4. Health traits in the breeding goal
5. Final remarks and conclusion
Disease - Health

• Diseases
 – Reduce animal welfare
 – Economic losses for farmers extra costs:
 • Veterinarian treatments
 • Labour
 • Decreased production
 • Discarded milk
 • Involuntary culling
Disease - Health

• An improvement of health is desirable from:
 – A general ethical point of view
 – Lead to increased consumer acceptance
 – Economic importance to the farmer
Disease - Health

• An improvement of health can be reached by:
 – Management
 and
 – Genetic

A good registration system is essential for both management and genetic improvements!
Disease recording

- The systems in Denmark, Finland, Sweden and Norway are very similar

- The Danish system is used as an example
Systematic disease recording

- Started in Denmark in 1990 cooperation between Danish Cattle Federation and the Danish Veterinarian Society

- Started earlier in Norway, Sweden and Finland
Data flow in relation to the central data base

Cow database

- Milk-analysis
- AI-service (Matings, Fertility service)
- ET
- Slaughter data
- Disease reports by vets
- Disease reports by farmers
- Linear assessment
- R&D
- Basis for Management Dairy Farm
- Feeding plans
- Health, basis for:
 - Preventive measure
 - Package of measures

Breeding Evaluation

- Identity - Pedigree
- Breeding plans:
 - Population
 - Herd
- Basis for Management Milkproduction
Disease recording system

- Transfer from invoicing systems used by veterinarians to the database
- By pencil in a standard system used also for other purposes - Herd manager and veterinarian
- Direct registration in central data by use of EDP (electronic data processing) software
Disease recording system

- Direct registration in central data base by use of EDP software is increasing. Now possible both by:
 - Traditional disk top
 - PDA – Personal Digital Assistance (pocket computer)
Disease recording system

- Recording of disease diagnoses can be made by both veterinarians and herd manager – double registrations are automatically avoided
- More than 80 different disease codes are used to describe the diagnoses
Disease recording system

- For management and breeding purposes the codes are usually pooled within four categories:
 - Udder diseases
 - Reproductive diseases
 - Digestive and metabolic diseases
 - Feet and leg diseases
Disease recording system

- Mandatory in Sweden and Norway
- Voluntary in Finland and Denmark
 - Exact figures unknown
 - Simple data rules ensure exclusion of herds not under systematic disease recording
Proportion of cows in herds with regular disease registration, Danish Holstein

2004 – 90%
Ownership and access to data

- The data are owned by the farmer
- Veterinarians are not paid for the registrations
- The farmer can give permissions to his advisors including the veterinarian to use his data
Use of the disease records

- **Management purposes (direct benefit)**
 - The farmer and the advisors can get access to several printouts, key figures etc. about the herd combining different registrations in the central database

- **Breeding purposes (important spin-off)**
 - Estimation of Breeding Values
Breeding purposes

Grouping of traits:

- Clinical mastitis
- Other diseases
 - Reproductive diseases
 - Digestive diseases
 - Feet and leg diseases
Mastitis frequency – year 2004

<table>
<thead>
<tr>
<th>Parity</th>
<th>DNK</th>
<th>SWE</th>
<th>FIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st day -15-50</td>
<td>13.8</td>
<td>5.8</td>
<td>6.8</td>
</tr>
<tr>
<td>1st day 51-305</td>
<td>8.5</td>
<td>4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>2nd day -15-150</td>
<td>19.0</td>
<td>9.5</td>
<td>11.1</td>
</tr>
<tr>
<td>3rd day -15-150</td>
<td>25.6</td>
<td>12.9</td>
<td>14.4</td>
</tr>
<tr>
<td>Parity</td>
<td>DNK</td>
<td>SWE</td>
<td>FIN</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1st day -15-50</td>
<td>13.5</td>
<td>7.2</td>
<td>8.4</td>
</tr>
<tr>
<td>1st day 51-305</td>
<td>10.7</td>
<td>7.2</td>
<td>7.5</td>
</tr>
<tr>
<td>2nd day -15-150</td>
<td>21.7</td>
<td>12.9</td>
<td>13.3</td>
</tr>
<tr>
<td>3rd day -15-150</td>
<td>25.9</td>
<td>16.6</td>
<td>15.3</td>
</tr>
</tbody>
</table>
Traits used in the current udder health index

<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>SCC</th>
<th>Udder conformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Scand.</td>
<td></td>
<td>x</td>
<td>(X)</td>
</tr>
<tr>
<td>Norway</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Nordisk Avlsværdivurdering
International genetic evaluation for SCC and mastitis (May 2006)

- 17 countries participate with SCC
- 4 countries participate with both SCC and mastitis
Joint Nordic Estimation of udder health

- Finland, Sweden and Denmark
- Presented at the Open Interbull (Johansson et al., 2006)
- Udder health index
 - Clinical mastitis
 - SCC
 - Udder depth, fore udder attachment
Definition of mastitis traits:

- 15 days before calving until 50 days after calving in 1st parity
- 51 days after calving until 300 days after calving in 1st parity
- 15 days before calving until 150 days after calving in second parity
- 15 days before calving until 150 days after calving in third parity.
EBV – udder health - Nordic

Information traits:

- SCC day 5-150 after calving in 1st parity
- SCC day 5-150 after calving in 2nd parity
- SCC day 5-150 after calving in 3rd parity
- Udder depth 1st parity
- Fore udder attach. 1st parity
EBV – udder health
Genetic parameters

- Clinical mastitis 4%
 - SCC 13%
 - Udder conformation 25%

- Genetic correlations:
 - CM different lactations 0.70-0.95
 - CM-SCC 0.60
 - CM-Udder conformation 0.35-0.50
EBV–udder health - Reliability (r_{IA}^2)

- **Udder health in theory**
 - Based on CM - max 100%
 - Based on SCC – max 36% (r_g^2)

- **Udder health in practice (DNK)**
 - 40% first proof same time as production
 - 60-65% based on 1. lact. daughters

- **FIN and SWE higher r_{IA}^2 due to larger daughter group size!**
Genetic response

- Genetic response udder health (Nielsen et al., 1996)
 - + 22% by adding CM to an Udder health index based on SCC + UC
 - + 50-60% adding CM to Udder health index based on SCC or UC
Genetic response

- Keeping genetic response for udder health constant (Nielsen et al., 1996)
 - Adding CM to an Udder health index based on SCC + UC increase the genetic response in protein
EBV – udder health
Nordic Economic weights

- 25% at -15 - 50 days in first parity
- 25% at 50 – 300 days in first parity
- 30% at -15 - 150 days in second parity
- 20% at -15 - 150 days in third parity
Effect of index for udder health

Danish Holstein

<table>
<thead>
<tr>
<th>Sire’s index for udder health</th>
<th>1st parity</th>
<th>3rd parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 85</td>
<td>21.7%</td>
<td>28.9%</td>
</tr>
<tr>
<td>86-95</td>
<td>18.3%</td>
<td>26.0%</td>
</tr>
<tr>
<td>96-105</td>
<td>15.3%</td>
<td>23.8%</td>
</tr>
<tr>
<td>106-113</td>
<td>13.9%</td>
<td>21.0%</td>
</tr>
<tr>
<td>≥ 114</td>
<td>10.7%</td>
<td>17.0%</td>
</tr>
</tbody>
</table>

Percentage of cows with mastitis
Other health traits

- Reproductive diseases
- Metabolic & digestive diseases
- Feet and leg diseases

- Heritabilities 1-3%
- Moderate positive correlations among disease traits
- Based on 1. batch daughters seldom $r_{IA}^2 > 65\%$
Effect of other health index
Holstein 3rd parity

<table>
<thead>
<tr>
<th>Sire’s index for other health traits</th>
<th>Percentage of cows with a diagnose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rep.</td>
<td>Dig.</td>
</tr>
<tr>
<td>≤ 85</td>
<td>14.4%</td>
<td>12.5%</td>
</tr>
<tr>
<td>86-95</td>
<td>14.6%</td>
<td>9.7%</td>
</tr>
<tr>
<td>96-105</td>
<td>15.9%</td>
<td>9.3%</td>
</tr>
<tr>
<td>106-113</td>
<td>14.6%</td>
<td>8.3%</td>
</tr>
<tr>
<td>≥ 114</td>
<td>12.9%</td>
<td>7.0%</td>
</tr>
</tbody>
</table>

1) Standard deviation of the index is approx. 10
Health traits in the Total Merit Indices

• Over the last 10 years
 – The focus has shifted from production to a more balanced breeding goal
 – Health has become more important

• Future
 – Health will become even more important
 – Farmers (and consumers) wish more healthy and fertile cows
 – A substantial weight has to be given to health to balance the unfavorable correlation with production
<table>
<thead>
<tr>
<th></th>
<th>Denmark</th>
<th>Sweden</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>0.67</td>
<td>0.45</td>
<td>0.74</td>
</tr>
<tr>
<td>Fertility</td>
<td>0.18</td>
<td>0.40</td>
<td>-0.03</td>
</tr>
<tr>
<td>Mastitis</td>
<td>0.35</td>
<td>0.43</td>
<td>0.18</td>
</tr>
<tr>
<td>Other disease</td>
<td>0.37</td>
<td>0.24</td>
<td>-</td>
</tr>
</tbody>
</table>
Correlation with TMI – Red breeds

<table>
<thead>
<tr>
<th></th>
<th>Denmark</th>
<th>Sweden</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>0.73</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>Fertility</td>
<td>0.15</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>Mastitis</td>
<td>0.44</td>
<td>0.34</td>
<td>0.19</td>
</tr>
<tr>
<td>Other disease</td>
<td>0.32</td>
<td>0.19</td>
<td>-</td>
</tr>
</tbody>
</table>
Genetic trend udder health – Holstein

Bull birth year

Index units

Denmark
Finland
Sweden
Genetic trend udder health – Red breeds
Final remarks I

Registration:

- Direct benefit important (management) and spin-off (genetic purposes)
- Develop current system – easier registration (Nordic countries)
- Setting up registration systems (non Nordic)
- Registrations from each milking (SCC other things)
Final remarks II

EBVs – use of data and statistical models:

- MT-models combine CM with indicator traits (SCC and UC)
- Split CM in different periods/traits to get an EBV early
- Consider the nonlinear magnitude of the CM data
- Move from lactation model to TD or mixture models for SCC
Final remarks III

EBVs – use of data and statistical models

- Improve genetic evaluation for other diseases
- Include QTLs in genetic evaluation of diseases – registrations is a basic
- Include pathogen data
Final remark IV

Breeding goal and breeding work:

Disease resistance against mastitis and other diseases are important both economical and ethical.

Follow TMI when selecting both proven sires and bull sires.

Important to look carefully at all available information to ensure positive genetic trend for disease (mastitis) resistance.
Conclusion - health

- Registration of diseases is a basic
- Low heritability but large genetic variation
- EBVs use data as efficient as possible
- Economic important
- Has to be included in a breeding goal and given a substantial weight