

Measurement error variance of testday observations from automatic milking systems

Pitkänen, T., Mäntysaari, E. A., Nielsen, U. S., Aamand, G. P., Madsen, P. and Lidauer, M. H.

Outline

- Background
- Estimation of measurement error covariance matrices
 - Data
 - Variance component estimation and covariance function fitting
 - Results
- Approach to estimate AMS measurement error covariance matrices
- Conclusions

Background

- The number of herds using automated milking system (AMS) is increasing
- The test-day observations are obtained in different manner for AMS and for herds having conventional milking system (CMS)
- Milk yield test-day observations used in Nordic yield evaluation are sum of morning and evening milking for CMS and average of one week milkings for AMS
- Protein and fat content observations are based mainly on one sample, however fat content depends on milking interval
- Due to differencies, different measurement error variance for both milking systems should be considered

Estimation of measurement error covariance matrices

- Data sampled from Danish Holstein yield evaluation data from years 2001 – 2010
- It has 40 AMS and 60 CMS herds
- In this presentation milk, protein and fat yield observations are used

First lactation statistics

AMS	CMS	total
40	60	100
12267	38084	49145
91839	320596	
28.2	26.8	
0.95	0.89	
1.12	1.09	
6.24	5.98	
0.19	0.18	
0.25	0.24	
	AMS 40 12267 91839 28.2 0.95 1.12 6.24 0.19 0.25	AMSCMS 40 60 12267 38084 91839 320596 28.2 26.8 0.95 0.89 1.12 1.09 6.24 5.98 0.19 0.18 0.25 0.24

Variance component estimation

• Variance components were fitted using model

 $Y_{ms} = Xb + HTD + \Phi_p p + \Phi_p a + e_{MS}$

- X is an indicence matrix for fixed effects b
- HTD is random herd-test-day effect
- \$\vec{P}_p\$ and \$\vec{P}_a\$ are matrices associating non-genetic animal effects
 \$\vec{P}\$ and genetic animal effects \$\vec{a}\$ to an observation
- e_{MS} is random residual error vector for milking system MS
- Separate residual (co)variance matrices for milk, protein and fat were estimated for 12 intervals

Covariance functions

- Covariance functions for both milking systems were fitted
- During fitting the rank of genetic and non-genetic covariance matrices were reduced from 12 to 7
- Part of residual variation is included in the non-genetic variation and only one measurement error matrix is left for both milking systems (E_{AMS}, E_{CMS})

Residual variance estimates milk

dim

Residual variance estimates protein

Residual variance estimates fat

dim

Measurement error covariances and correlations

		E _{AMS}			E _{CMS}			
	Milk	Protein	Fat		Milk	Protein	Fat	
Milk	3.96	0.126	0.128	_	5.39	0.176	0.189	
Protein	0.84	0.006	0.005		0.92	0.007	0.007	
Fat	0.44	0.48	0.021		0.66	0.67	0.015	

Covariances are above and correlations below diagonal

Non-genetic variance from AMS and CMS CF's Milk

dim

Genetic variance from AMS and CMS CF's, Milk

Curves for AMS and CMS are exactly the same due to common genetic effect

Heritabilities milk

Approach to estimate AMS residual covariance matrices

Assumptions

- Constant differences between residual variances for different milking systems
- No milking system interaction between other variance components in the model

If assumptions hold then

 Estimate measurement error variance components by using already available CF and corresponding variance components as fixed and estimate only measurement error covariance matrices for AMS and CMS

The procedure for example data

- 1. Estimate measurement error variance components by using CF from Nordic TDM
- 2. Estimate measurement error covariance matrices for all three lactations
- 3. Compare variance component estimates to ${\sf E}_{\sf ams}$ and ${\sf E}_{\sf cms}$ obtained earlier

Measurement error variance estimates for three lactations, based on TDM CF

	Lactation 1			Lactation 2			Lactation 3		
	AMS	CMS	Ratio	AMS	CMS	ratio	AMS	CMS	ratio
Milk	3.85	5.39	0.71	5.38	7.55	0.71	6.01	9.06	0.66
Protein	0.006	0.007	0.83	0.008	0.009	0.81	0.008	0.011	0.77
Fat	0.021	0.015	1.40	0.033	0.022	1.51	0.038	0.027	1.44

Measurement error variance estimates Comparison of 1. lactation results

]	FDM CF		Original CF			
	AMS	CMS	ratio	AMS	CMS	ratio	
Milk	3.85	5.39	0.71	3.96	5.39	0.73	
Protein	0.006	0.009	0.83	0.006	0.007	0.84	
Fat	0.0205	0.015	1.40	0.021	0.015	1.42	

- The estimates and ratios are close to each other
- The estimation approach will produce usable results even the CF is based on different data

Conclusions

- Measurement error variances differ between milking systems
 - AMS has lower measurement error variances for milk and protein and higher for fat
 - AMS has lower correlation between traits
- Measurement error covariance matrix estimation can be done by using the proposed approach

Thank you for your attention!

