Nordic Total Merit Index (NTM)

Proteje meeting 18th May 2010 - Paris

Gert Pedersen Aamand, Nordic Cattle Genetic Evaluation, Udkaersvej 15, DK-8200 Aarhus N, Denmark e-mail: gap@vfl.dk Homepage: www.nordicebv.info

Denmark 40.000 RDM 362,000 HF **58.000 Jersey**

NAV

Established 01.01.2002 by:

Faba breeding
Swedish Dairy Association
Danish Cattle

Nordic Cattle Genetic Evaluation - history

- 2002 Established
- 2002 Development has started
- 2005 first EBVs published type, milk ability, temperament and fertility
- 2006 Yield and mastitis
- 2007 Calving
- 2008 Other diseases and NTM(Nordic Total Merit)
- 2009 Growth
- NAV 2010 Longevity

Genetic evaluation

Denmark Sweden Data Finland **NAV** model **NAV**

NAV-EBVs

Joint ranking of animals

- Expressed on rolling "cow base" mean 100
- Expressed with a standard deviation of 10

Joint EBVs a basis for a joint TMI

Economic basis 2007

(Best possible estimates for the current economic situation in Finland, Sweden and Denmark)

Joint Nordic Breeding Goal

Total Merit Index

- Most efficient way to weigh economic important traits together
- Maximizes genetic/economic progress

Total Merit Indices - history

- 1975-1985 TMI- introduced in Nordic countries including production and functional traits
- 1985-2007 TMI's in Nordic countries gradually improved more traits - better methods
- 1990-2000 TMI based on few traits popular in many countries
- 2008 Joint Nordic TMI called NTM
- Today everyone see the need for having a TMI including all economic important traits

Economic values

The value of one unit improvement in the trait – keeping the remaining traits constant

Future production circumstances 5 - 10 years ahead

Nordic Total Merit Index (NTM)

Three step procedure:

- 1) Economic values for single traits 2007-2008 44 single traits - single conformation traits not included
 - Based on "current" situation (Spring 2007) !!
- 2) Breeding goal adjustments 2008 Input from breed organisations and others on
 - Perspective for the future
 - "Non-economic" value
- 3) Implementation in practice ultimo 2008

Economic basis - survey of traits analysed

- Yield: Milk, Protein and Fat production
- Beef production: Net daily gain, EUROP form score
- Calving traits: Calf vitality and calving ease
- Fertility: Periods Calving to 1st Al, 1st to last, Number of Al's
- Udder health: Frequency of mastitis and SCC
- Other health traits: Metabolic, Feet & legs, reproductive diseases
- Longevity
- Conformation: Body, Feet& legs, Udder
- Milking speed, Temperament

Method: Economic profit model

- Deterministic data simulation (Excel farm accounting)
- Results expressed as: Marginal profit per cow per year
- Many assumptions: Economic, technical, biological

Method: Economic profit model

Strengths

- Transparency interactions can be understood
- Possible to run many alternatives

Method: Economic profit model

Shortcomings

- Insufficient modelling of cow culling process
- All cow replacement costs attached to longevity
 - "repaired" by transfer of value from **longevity**

Production scenarios (countries) and breed groups

RDC Holstein **Jersey** DNK RDM HOL **JER** HOL **SWE** SRB FIN* AYS HOL

^{*} For Finland both a southern and northern scenarios was considered

Production scenarios and breed groups

Basic levels per breed and country, e.g.

- Weight, Calving age, Yield
- Stillbirth rate, Calving difficulty
- Fertility, Frequency of diseases

Milk production traits

Results depend on:

- Sales value of milk marginal feed costs
- Distribution of 1st, 2nd and later lactations
- Lactation yield of culled cows and staying cows
- Calving age, calving interval, days dry
- Milk used for calf feed
- Milk discarded due to diseases

Input examples

Assumed average phenotypic milk production, 305 day yield (kg)

	RDM	SRB	AYS	HOL	HOL	HOL	JER
	DNK	SWE	FIN	DNK	SWE	FIN	DNK
Milk, 1 st lact.	7217	7755	7477	7808	8558	7995	5345
Milk, 2 nd lact.	7891	8470	8528	8863	9843	9162	6006
Milk, 3 rd lact.	8212	8790	8902	9239	10074	9648	6246
Protein, 1 st lact.	254	271	258	260	284	268	214
Protein, 2 nd lact.	280	296	293	299	326	309	247
Protein, 3 rd lact.	289	303	300	308	331	320	255
Fat, 1 st lact.	303	335	320	317	337	311	313
Fat, 2 nd lact.	333	363	361	361	389	356	355
Fat, 3 rd lact.	346	377	377	379	403	378	371

Input examples

Assumed average phenotypic culling rates within lactations

	RDM	SRB	AYS	HOL	HOL	HOL	JER
	DNK	SWE	FIN	DNK	SWE	FIN	DNK
1st lact.	33 %	34 %	25 %	30 %	31 %	25 %	29 %
2 nd lact.	38 %	39 %	35 %	40 %	40 %	35 %	34 %
3 rd + lact.	43 %	44 %	50 %	50 %	50 %	50 %	39 %

Results: € / kg standard milk

	DNK	SWE	FIN	Average
RDC	0.17	0.17	0.23	0.19
HOL	0.17	0.17	0.21	0.18
JER	0.16			0.16

Comments to yield results

- DNK and SWE value of yield is very similar
- FIN south value of yield is slightly larger than DNK and SWE
 - FIN south is the larger part of Finland
 - Northern Finland has an even larger value

Fertility

Fertility traits evaluated:

- First to last AI for heifers and cows
- Number of AI's for heifers and cows
- Calving to first AI for cows

Factors of importance

- AI Costs
- Work (AI and heat surveillance)
- Beef production profit (extra calves)
- Milk production profit (extra milk production)

Economic value Mastitis and other diseases

Breeding value of "Frequency of 1st cases"

1st, 2nd and 3rd lactation

Value depend on:

- Total number of cases (number of repeated treatments)
- **Cost of veterinary treatment**
- Extra work
- **Discarded milk**

Longevity

Effects

- Distribution of lactations and milk production
- Number of calving per year (beef production)

70% of variation in longevity is explained by fertility, udder health, other diseases, conformation of udder and of feet &legs

A perfect model would distribute value to these traits

- Sales value of milk increased by 10%
- Feed cost was increased by 10%
- Sales value of beef was increased by 10%
- Price differences between EUROP form classes was increased by 10%
- Value of pregnant heifer was reduced to the slaughter value
- Labour costs was increased by 10%
- Veterinarian cost was increased by 10%
- 20€ was added to cost per insemination

- Sales value of milk increased by 10%
 - EV Yield: + 16 18%
 - EV Fertility: slightly up
 - EV Udder health: + 2-3%
- Feed cost was increased by 10%
 - EV Yield: 7-8%
- Sales value of beef was increased by 10%
 - EV Daily gain: Approx. + 30%
 - EV stillborn: Approx. + 10%
- EV longevity: Approx 6%

- EUROP form value increased by 10%
 - EV EUROP form score: + 10%
- Value of pregnant heifer reduced
 - EV stillborn: 30 to 40% (Jersey more)
 - EV fertility: 50 to 70%
 - EV longevity: Approx 50%
- Labour cost increased by 10%
 - EV of functional traits: + 2 to 4%
- - EV conformation: + 10%

- Veterinarian cost increased by 10%
 - EV calving ease: + 5 to 7%
 - EV disease traits: + 5 to 7%
- Cost per Al increased by 20 EURO
 - EV first to last ins: + 30 to 40%

Index weights from model

Trait	HOL RDC	
Yield	1.00	1.00
Growth	0.08	0.11
Fertility	0.41 (0.32)	0.28 (0.23)
Calving - direct	0.20	0.15
Calving - maternal	0.22	0.13
Udder health	0.46 (0.35)	0.34 (0.29)
Other health	0.16 (0.11)	0.13 (0.10)
Body	0.00	0.00
Feet & legs	0.10 (0.04)	0.07 (0.06)
Udder	0.12 (0.09)	0.14 (0.09)
Milking speed	0.11	0.07
Temperament	0.04	0.03
Longevity	0.15 (0.49)	0.09 (0.28)

Economic basis 2007

Best possible estimates for the current economic situation in Finland, Sweden and Denmark

We did not find very big country differences (Work done by project group of geneticists)

Expectations for the future – traits getting bigger/smaller value 5-10 years ahead

- Like looking in the crystal ball
- Signals about economic, animal welfare, future rules for keeping cows, ethical views etc.

Joint Nordic Breeding Goal

- Final decisions made at a workshop involving representatives from all Nordic Breeding organizations
- Result NTM-index close to the theoretical recommendations

Index weights from model and NTM (scaled)

	Trait	HOI Model	L NTM	RD Model	C NTM
	Yield	0.75	0.75	0.92	0.92
	Growth	0.06	0.06	0.10	0.00
	Fertility	0.31	0.31	0.26	0.26
	Calving - direct	0.15	0.15	0.14	0.14
100	Calving - maternal	0.17	0.17	0.12	0.12
	Udder health	0.35	0.35	0.31	0.32
	Other health	0.12	0.12	0.12	0.12
	Body	0.00	0.00	0.00	0.00
Fee	Feet & legs	0.08	0.15	0.06	0.09
	Udder	0.09	0.18	0.13	0.32
	Milking speed	0.08	0.08	0.06	0.06
	Temperament	0.03	0.03	0.03	0.03
NAV	Longevity	0.11	0.11	0.08	0.08

Gain from NTM for HOL

Correlations between EBV's for AI bulls born 2001-2003

Trait	Correlation with NTM
Yield	0.49
Growth	0.00
Fertility	0.39
Calving - direct	0.28
Calving - maternal	0.37
Udder health	0.46
Other health	0.47
Body	-0.04
Feet & legs	0.12
Udder	0.40
Milking speed	0.09
Temperament	0.03
Longevity	0.51

NAV

Economic value of one NTM unit per cow year

10.2 EURO HOL

RDC **9.1 EURO**

JER 7.8 EURO

Genetic trend for HOL

Overall aim of NTM

- High yielding cow
- Improved genetic level for functional traits – health & fertility
- Leads to improved longevity and economically enhanced dairy cows

Fullfilled!!

More information:

http://www.nordicebv.info/Publications/

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Joint Nordic Breeding Goal a positive debate lead to the NTM

Acknowledgement

- The work towards the NTM index has been carried out by Jørn Pedersen, Danish Cattle Federation and a Nordic working group including:
 - Minna Toivonen, Finland
 - Jan-Åke Eriksson, Sweden
 - Morten Kargo Sørensen, Denmark
 - Gert Pedersen Aamand, NAV

