

Research status (prediction) and a view (peek) into the future

Mogens Sandø Lund

How to increase genomic reliabilities

Increase reference population

- Join populations of same breed
- Cows in reference population
- Across breeds predictions

Increase LD information

- Haplotype models
- Sequence information

Statistical models

- GBLUP/SNP-BLUP
- Bayesian VSM
- Single step BLUP

Reference populations

Jersey

- Jersey agreement VG America
- Cows in reference
- RDC
 - NRF
 - HF

G-BLUP and Bayesian mixture models

	Reference		GBLUP		Bayes mixture	
	Single	joint	single	joint	single	joint
NRF	2,076	5,717	0%	6%	0%	10%
DR	3,367	5,717	0%	1%	3%	6%
SRB	3.367	5,717	0%	2%	0%	2%
FAY	3,367	5,717	0%	0%	0%	0%

G-BLUP and Bayesian mixture models

	Reference		GBLUP		Bayes mixture	
	Single	joint	single	joint	single	joint
NRF	2,076	5,717	0%	6%	0%	10%
DR	3,367	5,717	0%	1%	3%	6%
SRB	3.367	5,717	0%	2%	0%	2%
FAY	3,367	5,717	0%	0%	0%	0%

Joining reference populations

	Nordic HF + Euro HF
	Lund et al. GSE 2011
REF	3035
Joint REF	10762
Reliability increase	

SNP-chip vs. WGS

SNP chip

- Sample of SNP (higher minor allele frequency)
- Limited linkage disequilibrium depending on number of SNP
- High informativity for imputation
- Opportunity for custum made chip

Sequence

- Contains most variants (>20 mio SNP, indels, CNVs, etc)
- Causative variants included (no bias in selection of SNP)
- High linkage disequilibrium between markers and causative variants
- Sequence GWAS improve associations substantially (Goutam)

Include sequence SNPs (QTL regions, general) Or few potential QTN Bayesian models are needed Haplotype models

LD-chip

- Imputation of all genotyped bulls to WGS level
- GWAS with 10 mill SNP with R²>0.9
- Selection of 5-15 QTL for each index
- Selection 3-5 SNP
 - P-values
 - Functional annotations

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

Number of QTL in the LD-chip

Chr	Trait	HF	RDC	JER
1	Birth	10	15	10
2	Body-confirmation	6	8	5
3	Calving	13	12	15
4	Fat	15	14	14
5	Fertility	19	15	15
6	Growth	8	9	5
7	Leg	17	18	10
8	Longevity	8	11	14
9	Mastitis	16	17	25
10	Milk	13	18	16
11	Milking-speed	5	7	5
12	NTM	6	8	9
13	Other-diseases	23	21	13
14	Protein	22	10	14
15	Temperament	6	7	0
16	Udder	8	8	8
17	Yield	16	8	13

Combining genotyping and modeling

Phenotypes all cows >10.000.000

Where are we?

- Strong strategy to integrate WGS and prediction in practice
- New traits on research farm level
- Bring to large scale is needed
 - FE, metabolic diseases, Reproduction, milk spectra
 - Registration herds
 - Focus in new initiative
- Breeding plans

Bull reference

• 50K

Capture most genetic variance within breed

•700K

- Haplotype models
- Prediction over generations (and breeds)

Sequence data

- Causative variants
- Prediction over generations and breeds

9K for reference cows

- More cows in reference (cheaper)
- High imputation accuracy
- Add many potential causative variants
 - Non-additive effects
 - Testing for causative variants
- Better predictions across breeds

Models

•GBLUP → infinitesimal model

- No improvement from sequence data
- Needed for large scale predictions
- Can be modified to prioritise specific SNPs

BayesianVS models → causality model

- Select causal SNP or few SNP in high LD
- Needed to extract prior knowledge for GBLUP/SNP-BLUP

F. Dehareng^{1*†}, C. Delfosse^{1*}, E. Froidmont², H. Soyeurt^{3,4}, C. Martin⁵, N. Gengler^{3,4}, A. Vanlierde¹ and P. Dardenne¹

Increased LD

4 5 4