

Single step evaluations using haplotype segments

M. L. Makgahlela, T. Knürr, G. P. Aamand, I. Strandén

& E. A. Mäntysaari

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Interbull

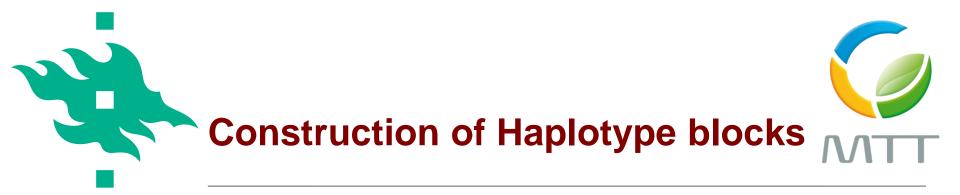
- Genomic evaluations, as originally proposed, were based on haplotype segments, which are;
 - closely located allele combinations that tend to be jointly inherited
- Many current evaluations however, use large number of SNP markers in models that are;
 - simplified and less computationally demanding

- If the observed reliabilities are low, haplo-block models may improve evaluations
 - 1) They were found to be more reliable than single markers
 - Because ancestral haplotypes may capture greater linkage disequilibrium (LD) with QTL than single markers
 - 2) They could greatly reduce the number of markers for genomic evaluations
 - 3) There are many free haplotyping software available

- Examine the reliability of single step with genomic relationship matrix (G) constructed using haplotype segments in the Nordic Red dairy cattle (RDC)
- Compare the haplo-block model with standard singlestep GBLUP

Genotypes

 After editing, there were 38,194 informative SNPs available for 4,727 bulls born between 1971-2008


Phenotypes

- Deregressed Proofs (DRP) of cows for milk, protein and fat
 - Full data (DRP_F) → 3,633,481 cows
 - Reduced data (DRP_R) i.e., discard cows born after > 2005 → 3,146,448 cows
- Full RDC pedigree (n=4,873,703)

- ApaX in Mix99 program was used for calculating EDCs
- 2 runs of animal model were used to solve deregressed bull EBVs as follows;
 - 1st full run → with DRP_F → generate DRP for 519 validation bulls born between 2002-2008 with EDC>=20
 - 2nd reduced run → with DRP_R → daughters of 4,208 training bulls born between 1971-2005

- 1) BayesB fitting joint estimation of SNP effects in multilocus model
- 2) Rank SNPs by the absolute effect $\hat{\beta}_g$
- 3) Haplotype (phase) genotypes using Beagle software
- 4) Construct **5-SNP** haplotypes (i.e., 2 SNPs before and after the one with the highest $\hat{\beta}_g$)
- 5) Estimate haplotype variances
- 6) Number of haplotype segments \rightarrow 750 and 1500

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{G} \mathbf{w}^{-1} - \mathbf{A}_{22}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \text{ where }$$

 A⁻¹ includes all animals and A₂₂⁻¹ is a sub-matrix for genotyped bulls

•
$$Gw = (1 - w)Gk + wA_{22}$$

✓ $k = \frac{\text{trace}A_{ii_{22}}}{\text{trace}G_{ii}}$; w values were varied at 0.10, 0.20 or 0.40

Single step model

Haplo-block G

$$\boldsymbol{G} = \boldsymbol{Z}\boldsymbol{D}\boldsymbol{Z}' \hspace{0.1cm} ; \hspace{0.1cm} \boldsymbol{Z}_{i,j} \hspace{-.5cm} \leftarrow \hspace{-.5cm} \big(0 - 2p_j \big) \hspace{-.5cm}; \big(1 - 2p_j \big) \hspace{-.5cm}; \big(2 - 2p_j \big) \hspace{-.5cm}, \hspace{0.1cm}$$

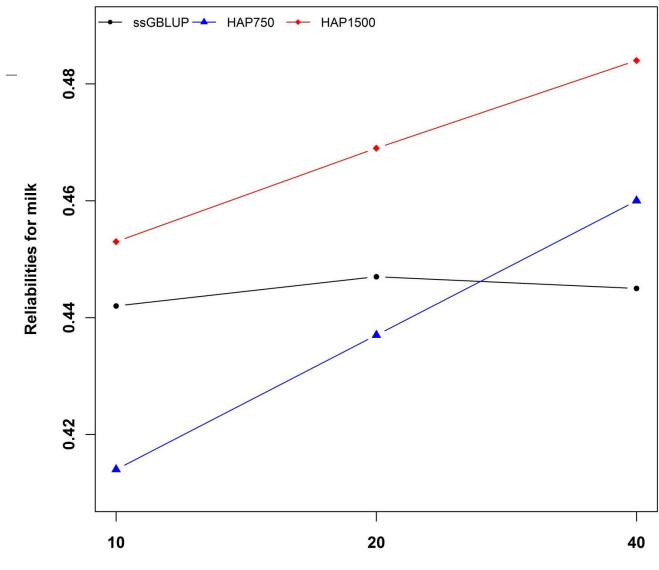
- 0,1 or 2 is the number of 2nd allele
- p_i is the frequency for the 2nd allele
- **D** is a diagonal of the estimate of haplotype variances
- Haplo-block G was constructed with segments length 750 (HAP750) and 1500 (HAP1500)
- Regular SNP-based G:

$$\mathbf{G} = \mathbf{Z}\mathbf{Z}' / \sum 2pq$$

 $DRP_{R_{cow}} = 1_n \mu + \mathbf{Z}a + e,$

➤ where:

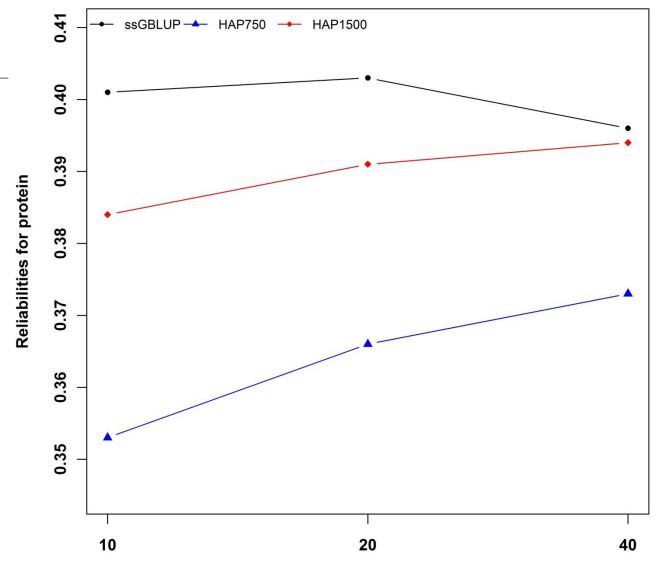
- ✓ $var(a) = H\sigma 2_a$ with variances from NAV routine evaluations
- ✓ DRP_{R_{cow}} is the deregressed proof of the daughter of training bulls in the reduced data
- ✓ Reliability of DRP was used as weight


 $DRP_{F_{bull}} = b_0 + b_1 GEBV + e,$

> where:

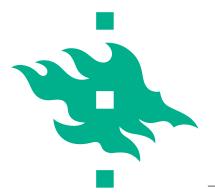
- ✓ DRP<sub>F_{cow} is the deregressed proof of the candidate from the full data run
 </sub>
- ✓ Reliability of DRP was used as weight

Validation reliabilities for milk

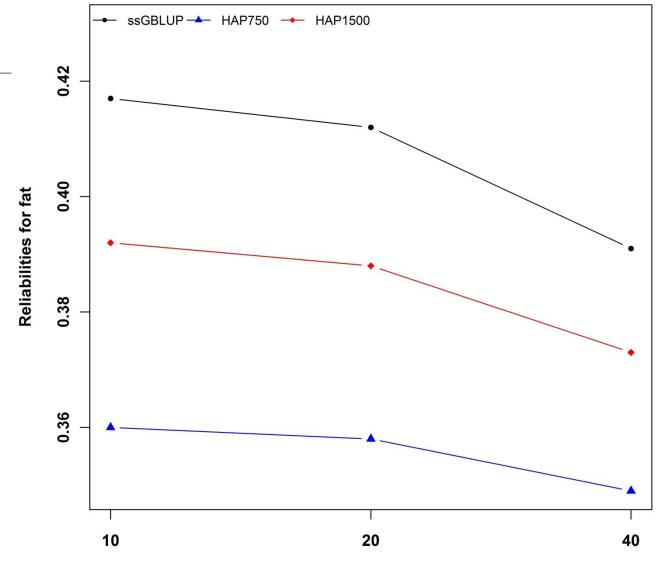


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Interbull meeting 23-25.8.2013, Nantes, France



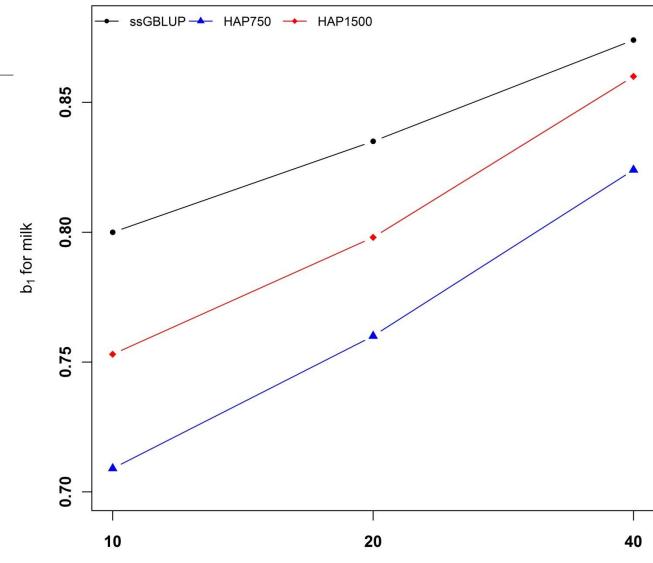
Validation reliabilities for protein



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Interbull meeting 23-25.8.2013, Nantes, France

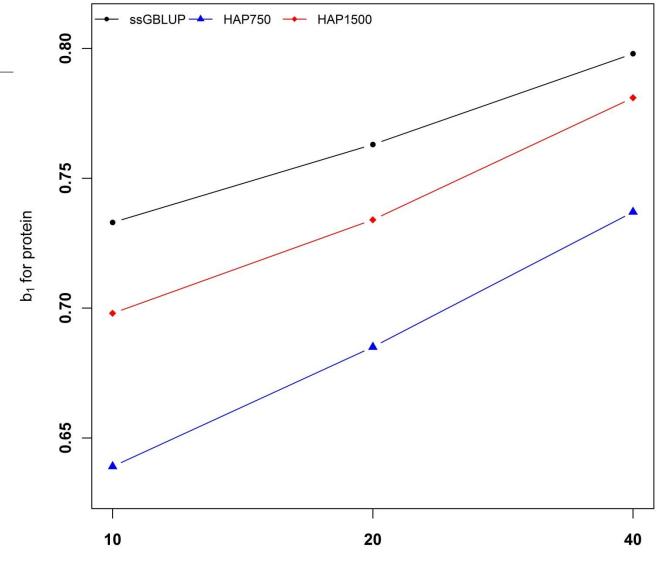
Validation reliabilities for fat



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

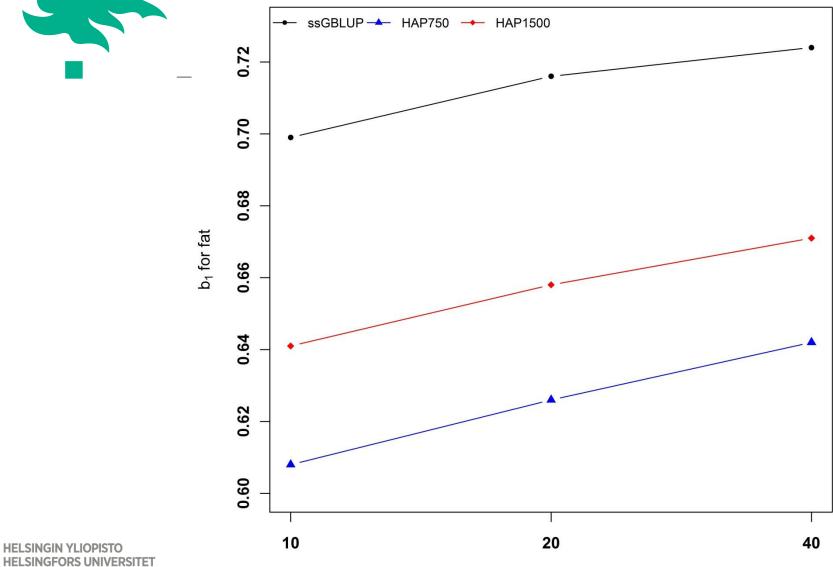
Interbull meeting 23-25.8.2013, Nantes, France

Inflation for milk



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Interbull meeting 23-25.8.2013, Nantes, France


Inflation for protein

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Interbull meeting 23-25.8.2013, Nantes, France

Inflation for fat

17.2.2014

17

Interbull meeting 23-25.8.2013, Nantes, France

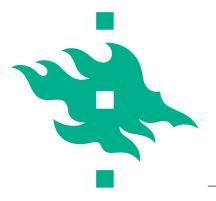
UNIVERSITY OF HELSINKI

Validation reliabilities of GEBV

	Method	Milk	Protein	Fat
	w A =0.1			
	ssGBLUP	0.442	0.401	0.417
	HAP750	0.414	0.353	0.360
	HAP1500	0.453	0.384	0.392
	w A =0.2			
	ssGBLUP	0.447	0.403	0.412
	HAP750	0.437	0.366	0.358
	HAP1500	0.469	0.391	0.388
	w A =0.2			
	ssGBLUP	0.445	0.396	0.391
) RSIT	HAP750	0.460	0.373	0.349
INKI	HAP1500	0.484	0.394	0.373

Inflation of GEBV

	Inflation of GEBV					
	Method	Milk	Protein	Fat		
	w A =0.1					
	ssGBLUP	0.800	0.733	0.699		
	HAP750	0.709	0.639	0.608		
	HAP1500	0.753	0.698	0.641		
	w A =0.2					
	ssGBLUP	0.835	0.763	0.716		
	HAP750	0.760	0.685	0.626		
	HAP1500	0.798	0.734	0.658		
	w A =0.2					
	ssGBLUP	0.874	0.798	0.724		
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSIT	HAP750	0.824	0.737	0.642		
UNIVERSITY OF HELSINKI	HAP1500	0.860	0.781	0.671		



- The validation reliability for milk was clearly increased when using more haplotype segments \rightarrow HAP1500
 - 1, 2 and 4 % when the weight on A was 0.1, 0.2 and 0.4, respectively
- Reliability for milk with HAP750 was increased by 2% when the weight on **A** was 40%
- These improvements however, were not achieved for protein and fat as reliabilities were low
- Reliabilities of haplo-block models for milk and protein tended to increase with increasing weight on A but the opposite was true for fat

- For all traits, the inflation levels of GEBV were greater with haplo-block models
 - In all cases, inflation intervals with standard single step reduced as the amount of pedigree increased
- The use of haplotype segments appeared to be very promising provided there is balance between the number of haplotypes and optimal scaling with pedigree information

THANK YOU !!!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Interbull meeting 23-25.8.2013, Nantes, France

www.helsinki.fi/yliopisto 17.2.2014 22