

Single step genomic evaluations for the Nordic Red Dairy cattle test day data

Minna Koivula, Ismo Strandén, Jukka Pösö, Gert Pedersen Aamand, Esa A. Mäntysaari*

Introduction

- Most genomic evaluations are currently based on multi step -approach:
 - 1) traditional evaluation with an animal model
 - 2) extraction of pseudo-observations
 - genomic model is used to predict direct genomic values (DGV) of candidate animals without own records
- In the single step analysis the phenotypic records are combined directly with genomic information, and the resulting genomic enhanced breeding value (GEBV) already combine both sources of information optimally

Objectives

- Random regression test-day (TD) model is currently used for the official genetic evaluation in Nordic Red Dairy Cattle (RDC)
- As more selection decisions are being made utilizing genomic information, it is becoming essential that all genomic information is included in national evaluations
- Objectives of this study:
 - 1) evaluate feasibility of the TD single step model using phenotypic records of Nordic RDC cows
 - 2) calculate validation reliabilities for single step TD model

Data sets and evaluation models:

- Nordic production test-day data from March 2012
 - 3.5 million cows with records
 - 4.8 million animals in the Nordic RDC pedigree
 - 95.6 million records
 - 184 million equations
- Nordic udder health trait data
 - 4.4 million cows with records
 - 5.4 million animals in the Nordic RDC pedigree
 - 77.3 million records
 - 146 million equations
- Multiple trait multi-lactation models:
 - Production evaluation: 27 biological TD traits/lactation functions
 - Udder health evaluation: 9 biological TD traits

Single step model:

- Pedigree extracted for 5,729 animals with genotypes
- $H^{22} = [G^*]^{-1} A_{22}^{-1}$
- 1) A⁻¹constructed using full pedigree file with all animals
- 2) **G** -matrix scaled with Σ2pq and ΣG_{ii} / ΣA_{ii}
- 3) 0.20 weight for polygenic (A₂₂) in **G*** (Christensen and Lund, 2010)
- Implementation
- PCG iteration on data using full pedigree
- Additional covariance structure (H²²) read in each iteration
- Procedure implemented in MiX99 software package

GEBV validation set up

Full run included all observations

1) Full data $--> EBV_F$ and $GEBV_F$

Reduced run – data until Feb 2008 (4 years of observations removed)

- 2) Reduced data --> EBV_R and **GEBV**_R
- EBVs and GEBVs for all animals
 - combined (G)EBVs for Milk, Protein, Fat, SCC and CM

- For validation purposes:
 - 1. EDCs calculated with ApaX in MiX99 package
 - Deregressed bull EBVs from the EBV_F for Milk, Protein, Fat, SCC and CM
 - 3. Genotyped bulls divided into reference and candidate bulls
 - Candidate bulls
 - had no daughters with observations in reduced data
 - had EDC>20 in the full data
 (bulls were born between 2003-2007)
 - The production evaluation had 748 candidate bulls
 - The udder health evaluation had 737 candidate bull

Model solving

 Routine TD evaluation models without heterogeneous variance correction

Production traits:

- runs took ~12 h
- Fixed number of iteration rounds 1500
 no time and convergence difference in TD and in single-step TD

Udder health traits:

- Runs took 17 31 h; single step models needed
 - ~14 h more for convergence and
 - ~1600 iterations more than models without genomic data

Correlations among GEBVs and EBVs in candidate bulls

- above diagonal for milk and below diagonal CM

	EBV _R (PA)	EBV _F	GEBV _R	GEBV _F
EBV _R (PA)	1	0.51	0.80	0.51
EBV_F	0.40	1	0.63	0.99
GEBV _R	0.70	0.51	1	0.67
GEBV _F	0.40	0.96	0.63	1

Validation results

Regression of DRP to $GEBV_R$ or $EBV_R(PA)$

$$R_{\text{validation}}^2 = R_{\text{model}}^2 / r_{\text{DRP}}^2$$

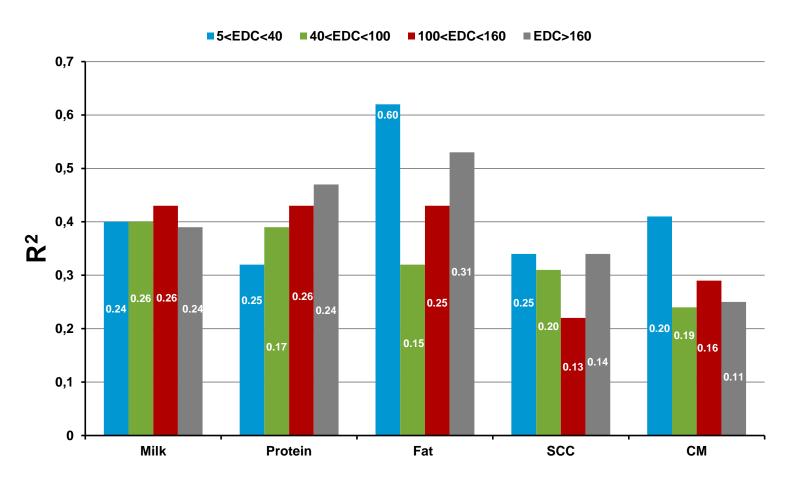
	PA		GE	r ² _{DRP}	
					Candidate bulls
	b ₁	R ²	b ₁	R ²	
Milk	0.82	0.25	0.88	0.40	0.93
Protein	0.81	0.23	0.90	0.40	0.91
Fat	0.78	0.29	0.85	0.50	0.91
SCC	0.86	0.15	0.87	0.31	0.87
СМ	0.77	0.13	0.76	0.27	0.80

Validation results from TD model single step, sire model and animal model deregressed proofs

	Milk		Protein		Fat	
	b ₁	R ²	b ₁	R ²	b ₁	R ²
PA _{AM}	0.70	0.22	0.89	0.25	0.80	0.28
DGV	0.76	0.30	0.77	0.31	0.85	0.40
GEBV _{SM}	0.69	0.32	0.74	0.35	0.80	0.44
GEBV _{AM}	0.72	0.35	0.81	0.38	0.79	0.45
GEBV _R	0.88	0.40	0.90	0.40	0.85	0.50

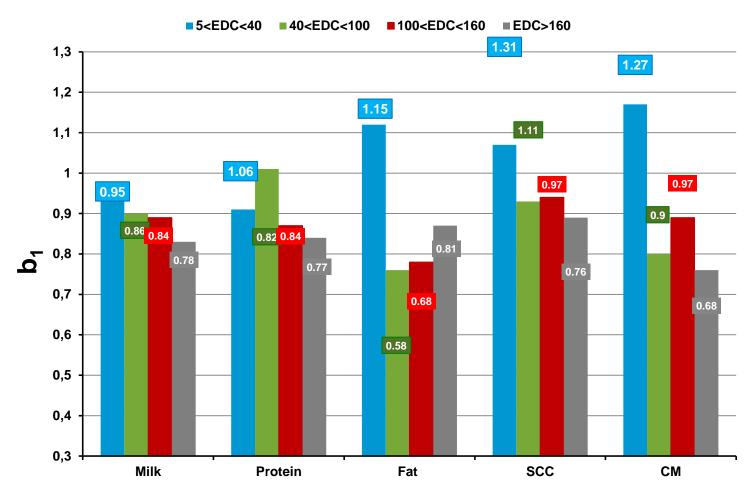
PA_{AM} = parent average - animal model,

DGV = direct genomic values - 2-step fit,

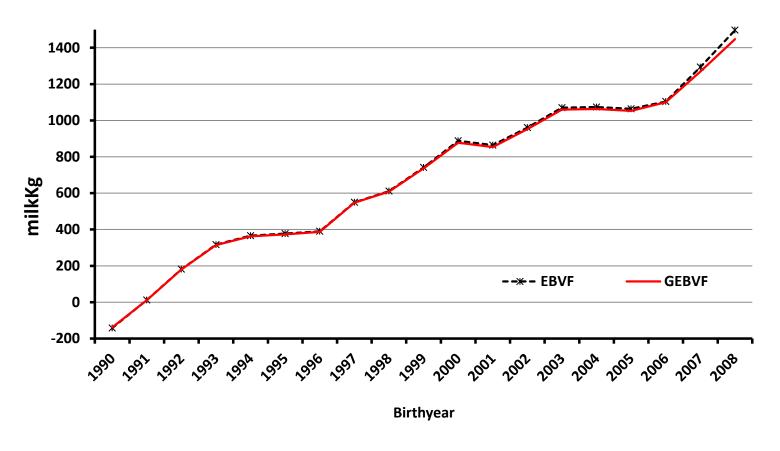

GEBV _{SM} = GEBVs using single step genomic model with sire deregressed proofs (Koivula et al. JDS 2012).

GEBV _{AM} = GEBVs using the parameters from animal model deregression (Mäntysaari et al. 2012, Interbull Bulletin 44)

 $GEBV_R$ = TD model GEBV


Validation R² by EDC group for candidate bulls

Values in bars show R² for PA


Validation b₁ by EDC group for candidate bulls

Values in bars show b₁ for PA

Genetic trends for milk EBV_F and GEBV_F

Genetic trend for CM EBV_F and GEBV_F

"Top 100" of candidate bulls

- 39/100 same with EBV_R (PA) and EBV_F
- 49/100 same with GEBV_R and EBV_F
- 93/100 same with GEBV_F and EBV_F

- Genomic information cause some re-ranking of bulls with daughters
- GEBV_R recognizes more top 100 bulls than PA

Conclusions

- Use of phenotypic test-day records in single-step analysis is feasible
 - The model is easy to implement
 - Build **A**₂₂
 - Build G*
 - Combine them into H²²
 - GEBVs and EBVs are consistent for bulls with daughters
 - GEBV validation reliabilities are higher compared to earlier sire model validations
 - GEBV inflation less than with DGVs but still exists

