Single-Step genomic evaluation with many more genotyped animals

Esa Mäntysaari Ismo Strandén

Genetic Research
Green Technology
Natural Resources Institute Finland (Luke)
EAAP - 67th Annual Meeting,
Belfast 29.8-2.9. 2016

ssGBLUP is computational challenge

- Original single-step genomic evalutions were based on $\operatorname{var}(\mathbf{u})=\mathbf{H}$ that has the size of N_{a} (animals in evaluation).
- The critical parts in \mathbf{H}^{-1} are dense matrices \mathbf{G}^{-1} and \mathbf{A}_{22}^{-1} that both have the size of number of genotyped animals $N_{\text {gta }}$.
- In many current (beef and dairy cattle) genomic evaluations $N_{\text {gta }} \gg 150000$

For \mathbf{A}_{22}^{-1} sparse matrices are solution
(in this session Strandén et al. 2016)
For \mathbf{G}^{-1} APY is one choice (in this session Misztal 2016)

APY has still finetuning

Existing approaches have still room for improvement

We present 2 alternative computational solutions for large scale single-step genomic evaluations:

1. single-step SNP-BLUP — revisiting Liu et al. (2014)

- but now modeling observations with SNPs and polygenic BVs

2. ssTBLUP - using Woodbury matrix identity for \mathbf{G}^{-1} in ssGBLUP

- i.e., $\quad\left(\mathbf{G}_{0}+k \mathbf{A}_{22}\right)^{-1}-\mathbf{A}_{22}^{-1}$ replaced by $\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1}+\mathbf{T T}^{\prime}$

A single-step SNP model: Definitions

Definitions adapted from Liu et al. (2014)
a_{2} is residual polygenic effect RPG $\mathbf{y}=\mathbf{X b}+\mathbf{W u}+\mathbf{e}$, with $\mathbf{u}^{\prime}=\left[\begin{array}{ll}\mathbf{u}_{1}^{\prime} & \mathbf{u}^{\prime}{ }_{2}\end{array}\right]$

- For genotyped animals (group2) $\mathbf{u}_{2}=\mathbf{Z g}+\mathbf{a}_{2}$
- Distribution of SNP marker effects
- $\operatorname{var}(\mathbf{g})=\mathbf{B} \sigma_{g}^{2}$
- Let k be the proportion of residual polygenic effect in \mathbf{u}_{2} $\operatorname{var}\left(\mathbf{a}_{2}\right)=\mathbf{A}_{22} k \sigma_{g}^{2}$ and $\operatorname{var}\left(\mathbf{u}_{2}\right)=\left(\mathbf{Z} \mathbf{B} \mathbf{Z}^{\prime}+k \mathbf{A}_{22}\right) \sigma_{g}^{2}=\mathbf{G}_{22} \sigma_{g}^{2}$
- It is possible to write \mathbf{u}_{1} (non-genotyped animals, group 1)
$\mathbf{u}_{1}=\mathbf{P} \mathbf{u}_{2}+\mathbf{d}$
- with projection matrix $\mathbf{P}=\mathbf{A}_{12} \mathbf{A}_{22}^{-1}$ and a deviation effect \mathbf{d}, with $\operatorname{var}(\mathbf{d})=\mathbf{D} \sigma_{g}^{2}$ note that $\mathbf{D}=\left(\mathbf{A}^{11}\right)^{-1}$

Joint variance of u and g

$$
\operatorname{var}\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{g}
\end{array}\right]=\mathbf{H} \sigma_{g}^{2}
$$

Following Liu et al. (2014)

$$
\mathbf{H}^{-1}=\left[\begin{array}{ccc}
\mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{0} \\
\mathbf{A}^{21} & \mathbf{A}^{22}+\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & -\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} \\
\mathbf{0} & -\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} & \mathbf{B}^{-1}+\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}
\end{array}\right] \sigma_{g}^{-2}
$$

1. Model with SNPs and residual polygenic effects

In Liu et al. the data model only included the aggregate breeding values \mathbf{u}_{2}.
... Not the marker effects!

We can as well model \mathbf{y} using the marker effects and RPG separately

$$
\mathbf{y}=\mathbf{X} \mathbf{b}+\left[\begin{array}{ccc}
\mathbf{w}_{1} & 0 & 0 \\
0 & \mathbf{w}_{2} & \mathbf{w}_{2} \mathbf{z}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{a}_{2} \\
\mathbf{g}
\end{array}\right]+\mathbf{e}
$$

Now we need the variance

$$
\mathbf{H}_{*} \sigma_{g}^{2}=\operatorname{var}\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{a}_{2} \\
\mathbf{g}
\end{array}\right]
$$

Variance structure \mathbf{H}_{*}

We can write a matrix \mathbf{S} to map the \mathbf{u}_{2} and $\mathbf{Z g}$ into \mathbf{a}_{2}

$$
\mathbf{s}\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{g}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{l} & \mathbf{0} & \mathbf{0} \\
0 & \mathbf{l} & -\mathbf{Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{l}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{g}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2}-\mathbf{z g} \\
\mathbf{g}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{a}_{2} \\
\mathbf{g}
\end{array}\right]
$$

Now we get the variance structure for the mapped function

$$
\operatorname{var}\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{a}_{2} \\
\mathbf{g}
\end{array}\right]=\mathbf{S H S}^{\prime}=\left[\begin{array}{ccc}
\mathbf{l} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{l} & -\mathbf{Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{l}
\end{array}\right] \operatorname{var}\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{g}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{l} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{l} & \mathbf{0} \\
\mathbf{0} & -\mathbf{Z}^{\prime} & \mathbf{l}
\end{array}\right]=\mathbf{H}_{*} \sigma_{g}^{2}
$$

And the inverse

$$
\begin{aligned}
\mathbf{H}_{*}^{-1} & =\left[\begin{array}{lll}
\mathbf{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{Z}^{\prime} & \mathbf{I}
\end{array}\right] \mathbf{H}^{-1}\left[\begin{array}{lll}
\mathbf{l} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \mathbf{Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{A}^{12} \mathbf{Z} \\
\mathbf{A}^{21} & \mathbf{A}^{22}+\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z}+\mathbf{B}^{-1}
\end{array}\right] \sigma_{g}^{-2} \\
& =\left[\begin{array}{lll}
\mathbf{H}_{*}^{11} & \mathbf{H}_{*}^{12} & \mathbf{H}_{*}^{13} \\
\mathbf{H}_{*}^{21} & \mathbf{H}_{*}^{22} & \mathbf{H}_{* 3}^{23} \\
\mathbf{H}_{*}^{31} & \mathbf{H}_{*}^{32} & \mathbf{H}_{*}^{33}
\end{array}\right] \sigma_{g}^{-2}
\end{aligned}
$$

MME for ssSNP-BLUP

Model equations for all the observations

$$
\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right][\mathbf{b}]+\left[\begin{array}{cc}
\mathbf{W}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{W}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{a}_{2}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{W}_{2} \mathbf{z}
\end{array}\right][\mathbf{g}]+\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2}
\end{array}\right]
$$

The mixed model equations

$$
\left[\begin{array}{cccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \mathbf{0} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \mathbf{0} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}
\end{array}\right]+\lambda\left[\begin{array}{ccccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{H}_{*}^{11} & \mathbf{H}_{*}^{12} & \mathbf{H}_{*}^{13} \\
\mathbf{0} & \mathbf{0} & \mathbf{H}_{*}^{21} & \mathbf{H}_{*}^{22} & \mathbf{H}_{*}^{23} \\
\mathbf{0} & \mathbf{0} & \mathbf{H}_{*}^{31} & \mathbf{H}_{*}^{32} & \mathbf{H}_{*}^{33}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{a}}_{2} \\
\hat{\mathbf{g}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{\mathbf { W } _ { 1 } ^ { \prime } \mathbf { y }} \\
\mathbf{W}_{2}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

where $\lambda=\sigma_{e}^{2} / \sigma_{g}^{2}$

MME

$$
\left[\begin{array}{cccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda^{12} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} X & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \lambda \mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z}+\lambda \mathbf{B}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{a}}_{2} \\
\hat{\mathbf{g}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

We can redefine/rename the marker design matrix for phenotypes: $\mathbf{W}_{2} \mathbf{Z}=\mathbf{Z}_{2}$

MME

$$
\left[\begin{array}{cccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda^{12} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} X & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \lambda \mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z}+\lambda \mathbf{B}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{a}}_{2} \\
\hat{\mathbf{g}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

We can redefine/rename the marker design matrix for phenotypes: $\mathbf{W}_{2} \mathbf{Z}=\mathbf{Z}_{2}$

MME

$$
\left[\begin{array}{cccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda^{12} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} X & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \lambda \mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z}+\lambda \mathbf{B}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{a}}_{2} \\
\hat{\mathbf{g}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

We can redefine/rename the marker design matrix for phenotypes: $\mathbf{W}_{2} \mathbf{Z}=\mathbf{Z}_{2}$

The model bounds logically: if $k \rightarrow 1.0$ then we have animal model MME

MME

$$
\left[\begin{array}{cccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda^{12} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} X & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{X}_{2} & \lambda \mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & \mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{W}_{2} \mathbf{Z}+\lambda \mathbf{Z}^{\prime}\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) \mathbf{Z}+\lambda \mathbf{B}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{a}}_{2} \\
\hat{\mathbf{g}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

We can redefine/rename the marker design matrix for phenotypes: $\mathbf{W}_{2} \mathbf{Z}=\mathbf{Z}_{2}$

The model bounds logically: if $k \rightarrow 0.0$ then we have Legarra \& Ducroq (JDS 2012)

MME version with projection matrices

An alternative form can be presented using the projection matrix \mathbf{P} :

$$
\begin{aligned}
\left(\mathbf{A}^{22}-\mathbf{A}_{22}^{-1}\right) & =\mathbf{A}^{22}-\left(\mathbf{A}^{22}-\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12}\right)=\mathbf{A}^{22}-\mathbf{A}^{22}+\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12} \\
& =\mathbf{P}^{\prime} \mathbf{A}^{11} \mathbf{P}
\end{aligned}
$$

This is because projection matrix can be written either $\mathbf{A}_{12} \mathbf{A}_{22}^{-1}$ or $-\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12}$.

With the terms of projection matrix, we can rewrite the MME:
$\left[\begin{array}{cccc}\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} & \mathbf{X}_{2}^{\prime} \mathbf{Z}_{2} \\ \mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{2} & \lambda \mathbf{A}^{12} \mathbf{Z} \\ \mathbf{W}_{2}^{\prime} \mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1} & \mathbf{W}_{2}^{\prime} \mathbf{Z}_{2}-\lambda \mathbf{A}^{21} \mathbf{P Z} \\ \mathbf{Z}_{2}^{\prime} \mathbf{X}_{2} & \lambda \mathbf{Z}^{\prime} \mathbf{A}^{21} & \mathbf{Z}_{2}^{\prime} \mathbf{W}_{2}-\lambda \mathbf{Z}^{\prime} \mathbf{P}^{\prime} \mathbf{A}^{12} & \mathbf{Z}_{2}^{\prime} \mathbf{Z}_{2}+\lambda \mathbf{Z}^{\prime} \mathbf{P}^{\prime} \mathbf{A}^{11} \mathbf{P Z}+\lambda \mathbf{B}^{-1}\end{array}\right]\left[\begin{array}{c}\hat{\mathbf{b}} \\ \hat{\mathbf{u}}_{1} \\ \hat{\mathbf{a}}_{2} \\ \hat{\mathbf{g}}\end{array}\right]=\left[\begin{array}{c}\mathbf{X}^{\prime} \mathbf{y} \\ \mathbf{W}_{1}^{\prime} \mathbf{y} \\ \mathbf{W}_{2}^{\prime} \mathbf{y} \\ \mathbf{Z}_{2}^{\prime} \mathbf{y}\end{array}\right]$

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the genotyped animals
- MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
- "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{a 2}$
- ssSNP-BLUP: each iteration requires 2 solves $\left[A_{22}^{-1} d_{a 2}\right.$ and $A_{22}^{-1} d_{z g}$]
- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
- This in our test runs with small 74000 animals data
only 2885 genotyped animals
but 38000 markers

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EfFECTS and RPG EFFECT only for the genotyped animals
- MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
- "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{a 2}$
- ssSNP-BLUP: each iteration requires 2 solves [$A_{22}^{-1} d_{a 2}$ and $A_{22}^{-1} d_{z g}$]

```
expected computing time small
```

- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
- This in our test runs with small 74000 animals data
only 2885 genotyped animals
but 38000 markers

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the genotyped animals
- MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
- "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{\mathrm{a} 2}$
- ssSNP-BLUP: each iteration requires 2 solves $\left[A_{22}^{-1} d_{a 2}\right.$ and $A_{22}^{-1} d_{Z g}$]

```
expected computing time small
```

- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
- This in our test runs with small 74000 animals data
- only 2885 genotyped animals
- but 38000 markers

2. From ss-GBLUP to ssTBLUP

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$
\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} \mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda \mathbf{M}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{\mathbf { W } ^ { \prime }} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]
$$

where
with

$$
\mathbf{G}_{k}=\left(k \mathbf{A}_{22}+\mathbf{Z} \mathbf{B} \mathbf{Z}^{\prime}\right)
$$

Note that inverse of \mathbf{G}_{k} can be derived from Woodbury matrix identity

$$
\mathbf{G}_{k}^{-1}=\left(k \mathbf{A}_{22}+\mathbf{Z} \mathbf{B Z} \mathbf{Z}^{\prime}\right)^{-}
$$

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} \mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda \mathbf{M}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]} \\
\mathbf{M}=\mathbf{G}_{k}^{-1}-\mathbf{A}_{22}^{-1} \\
\mathbf{G}_{k}=\left(k \mathbf{A}_{22}+\mathbf{Z} \mathbf{B} \mathbf{Z}^{\prime}\right)
\end{gathered}
$$

where
with

Note that inverse of \mathbf{G}_{k} can be derived from Woodbury matrix identity
$\mathbf{G}_{k}^{-1}=\left(k \boldsymbol{A}_{22}+\mathbf{Z B Z}^{\prime}\right)^{-1}$

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{W}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{W}_{2} \\
\mathbf{W}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{W}_{1}+\lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} \\
\mathbf{W}_{2}^{\prime} \mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_{2}^{\prime} \mathbf{W}_{2}+\lambda \mathbf{A}^{22}+\lambda \mathbf{M}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{y}
\end{array}\right]} \\
\mathbf{M}=\mathbf{G}_{k}^{-1}-\mathbf{A}_{22}^{-1} \\
\mathbf{G}_{k}=\left(k \mathbf{A}_{22}+\mathbf{Z} \mathbf{B} \mathbf{Z}^{\prime}\right)
\end{gathered}
$$

where
with

Note that inverse of \mathbf{G}_{k} can be derived from Woodbury matrix identity

$$
\begin{aligned}
\mathbf{G}_{k}^{-1} & =\left(k \mathbf{A}_{22}+\mathbf{Z} \mathbf{B} \mathbf{Z}^{\prime}\right)^{-1} \\
& =\frac{1}{k} \mathbf{A}_{22}^{-1}-\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z}\left(\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}+\mathbf{B}^{-1}\right)^{-1} \frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1}
\end{aligned}
$$

Variance structure for genotyped animals

$$
\begin{aligned}
\mathbf{M} & =\mathbf{G}_{k}^{-1}-\mathbf{A}_{22}^{-1} \\
& =\frac{1}{k} \mathbf{A}_{22}^{-1}-\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z}\left(\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}+\mathbf{B}^{-1}\right)^{-1} \frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1}-\mathbf{A}_{22}^{-1} \\
& =\mathbf{M}_{1}-\mathbf{M}_{2}
\end{aligned}
$$

where

$$
\mathbf{M}_{1}=\left(\frac{1}{k}-1\right) \mathbf{A}_{22}^{-1}
$$

and

$$
\mathbf{M}_{2}=\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z}\left(\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}+\mathbf{B}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \frac{1}{k}
$$

Although $\mathbf{M}_{\mathbf{2}}$-matrix looks cumbersome, it is computationally simple because the inverse is only done for $\mathrm{p} \times \mathrm{p}$ matrix. Or actually inverse is not needed at all....

Instead of inverting the "coefficent matrix", make a Cholesky decomposition:

$$
\mathbf{L}^{\prime} \mathbf{L}=\left(\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}+\mathbf{B}^{-1}\right)
$$

Note that the $\mathbf{A}_{22}^{-1} \mathbf{Z}$ can be calculated using projection matrix formula $\quad \mathbf{A}_{22}^{-1}=\mathbf{A}^{22}-\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12}$, which can be solved without inverting the \mathbf{A}^{11} (Strandén et al. EAAP 2016)

$$
\mathbf{L}^{\prime} \mathbf{L}=\frac{1}{k} \mathbf{Z}^{\prime}\left(\mathbf{A}^{22} \mathbf{Z}-\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12} \mathbf{Z}\right)+\mathbf{B}^{-1}
$$

Finally

This means that \mathbf{M}_{2} can be written as outerproduct of two rectangular matrices:

In which T has $N_{\text {gta }}$ rows (number of animals genotyped) and N_{p} columns (number of SNPs).

Instead of inverting the "coefficent matrix", make a Cholesky decomposition:

$$
\mathbf{L}^{\prime} \mathbf{L}=\left(\frac{1}{k} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \mathbf{Z}+\mathbf{B}^{-1}\right)
$$

Note that the $\mathbf{A}_{22}^{-1} \mathbf{Z}$ can be calculated using projection matrix formula $\quad \mathbf{A}_{22}^{-1}=\mathbf{A}^{22}-\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12}$, which can be solved without inverting the \mathbf{A}^{11} (Strandén et al. EAAP 2016)

$$
\mathbf{L}^{\prime} \mathbf{L}=\frac{1}{k} \mathbf{Z}^{\prime}\left(\mathbf{A}^{22} \mathbf{Z}-\mathbf{A}^{21}\left(\mathbf{A}^{11}\right)^{-1} \mathbf{A}^{12} \mathbf{Z}\right)+\mathbf{B}^{-1}
$$

Finally

$$
\mathbf{M}_{2}=\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z L}^{-1} \mathbf{L}^{-T} \mathbf{Z}^{\prime} \mathbf{A}_{22}^{-1} \frac{1}{k}
$$

This means that \mathbf{M}_{2} can be written as outerproduct of two rectangular matrices:

$$
\mathbf{M}_{2}=\left[\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} \mathbf{L}^{-1}\right]\left[\frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} \mathbf{L}^{-1}\right]^{\prime}=\mathbf{T} \mathbf{T}^{\prime}
$$

In which \mathbf{T} has $N_{\text {gta }}$ rows (number of animals genotyped) and N_{p} columns (number of SNPs).

ssTBLUP Discussion

- In solving the ssGBLUP:
- PCG iteration requires multiplications $\mathbf{G}^{-1} \mathbf{d}$ and $\mathbf{A}_{22}^{-1} \mathbf{d}$ in each iteration (d is direction vector)
- In state of art implementation, $\mathbf{A}_{22}^{-1} \mathbf{d}$ is formed explicitely using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_{k}^{-1} \mathbf{d}$ is replaced by consecutive $\mathbf{T}\left(\mathbf{T}^{\prime} \mathbf{d}\right)$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of T, no approximations are needed
\rightarrow the solutions are exactly the same as with same \mathbf{G}_{k} in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming T is essentially the same as in projecting (imputing)
the genotypes to their non-genotyped ancestors
- with few animals: flops to make $\mathrm{G}_{k}^{-1}<$ flops to make T
- with large number of animals: flops to make $T<$ flops to make \mathbf{G}_{k}^{-1}

ssTBLUP Discussion

- In solving the ssGBLUP:
- PCG iteration requires multiplications $\mathbf{G}^{-1} \mathbf{d}$ and $\mathbf{A}_{22}^{-1} \mathbf{d}$ in each iteration (\mathbf{d} is direction vector)
- In state of art implementation, $\mathbf{A}_{22}^{-1} \mathbf{d}$ is formed explicitely using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_{k}^{-1} \mathbf{d}$ is replaced by consecutive $\mathbf{T}\left(\mathbf{T}^{\prime} \mathbf{d}\right)$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of \mathbf{T}, no approximations are needed \rightarrow the solutions are exactly the same as with same \mathbf{G}_{k} in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming \mathbf{T} is essentially the same as in projecting (imputing)
the genotypes to their non-genotyped ancestors
- with few animals: flops to make $\mathrm{G}_{k}^{-1}<$ flops to make T
- with large number of animals: flops to make $\mathbf{T}<$ flops to make \mathbf{G}_{k}^{-1}

ssTBLUP Discussion

- In solving the ssGBLUP:
- PCG iteration requires multiplications $\mathbf{G}^{-1} \mathbf{d}$ and $\mathbf{A}_{22}^{-1} \mathbf{d}$ in each iteration (\mathbf{d} is direction vector)
- In state of art implementation, $\mathbf{A}_{22}^{-1} \mathbf{d}$ is formed explicitely using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_{k}^{-1} \mathbf{d}$ is replaced by consecutive $\mathbf{T}\left(\mathbf{T}^{\prime} \mathbf{d}\right)$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of \mathbf{T}, no approximations are needed \rightarrow the solutions are exactly the same as with same \mathbf{G}_{k} in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming T is essentially the same as in projecting (imputing)
the genotypes to their non-genotyped ancestors
$>$ with few animals: flops to make $\mathrm{G}_{\mathrm{k}}^{-1}<$ flops to make T
> with large number of animals: \quad flops to make $\mathrm{T}<$ flops to make G_{k}^{-1}

ssTBLUP Discussion

- In solving the ssGBLUP:
- PCG iteration requires multiplications $\mathbf{G}^{-1} \mathbf{d}$ and $\mathbf{A}_{22}^{-1} \mathbf{d}$ in each iteration (\mathbf{d} is direction vector)
- In state of art implementation, $\mathbf{A}_{22}^{-1} \mathbf{d}$ is formed explicitely using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_{k}^{-1} \mathbf{d}$ is replaced by consecutive $\mathbf{T}\left(\mathbf{T}^{\prime} \mathbf{d}\right)$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of \mathbf{T}, no approximations are needed \rightarrow the solutions are exactly the same as with same \mathbf{G}_{k} in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming \mathbf{T} is essentially the same as in projecting (imputing) the genotypes to their non-genotyped ancestors
- with few animals:
- with large number of animals:
flops to make $\mathbf{G}_{k}^{-1}<$ flops to make \mathbf{T}
flops to make $\mathbf{T}<$ flops to make \mathbf{G}_{k}^{-1}

Thank you for your attention!

We are grateful for the data and financing

NAV Nomata Alsmard Unateming Nordic Cattle Genetic Evaluation
沮

Valio

faba
Ammm.fi
V VIKING MINISTRY OF AGRICULTURE AND FORESTRY

