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ssGBLUP is computational challenge

• Original single-step genomic evalutions were based on var(u) = H
that has the size of Na (animals in evaluation).

• The critical parts in H−1 are dense matrices G−1 and A−1
22

that both have the size of number of genotyped animals Ngta.

I In many current (beef and dairy cattle) genomic evaluations Ngta >> 150 000

For A−1
22 sparse matrices are solution

(in this session Strandén et al. 2016)
For G−1 APY is one choice (in this session Misztal 2016)

APY has still finetuning
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Existing approaches have still room for improvement

We present 2 alternative computational solutions for large scale single-step genomic evaluations:

1. single-step SNP-BLUP — revisiting Liu et al. (2014)
I but now modeling observations with SNPs and polygenic BVs

2. ssTBLUP — using Woodbury matrix identity for G−1 in ssGBLUP
I i.e., (G0 +kA22)

−1−A−1
22 replaced by ( 1

k −1)A−1
22 +TT′
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A single-step SNP model: Definitions

Definitions adapted from Liu et al. (2014)

• A mixed linear model in a general form
y = Xb+Wu+e, with u′ =

[
u′1 u′2

]
• For genotyped animals (group2) u2 = Zg+a2

• Distribution of SNP marker effects

I var(g) = Bσ2
g

• Let k be the proportion of residual polygenic effect in u2
var(a2) = A22kσ2

g and var(u2) = (ZBZ′+kA22)σ
2
g = G22σ2

g

• It is possible to write u1 (non-genotyped animals, group 1)
u1 = Pu2 +d

I with projection matrix P = A12A−1
22 and a deviation effect d, with var(d) = Dσ2

g

a2 is residual
polygenic effect

RPG

note that D = (A11)−1



Joint variance of u and g

var

u1
u2
g

= Hσ
2
g

Following Liu et al. (2014)

H−1 =

A11 A12 0
A21 A22 +( 1

k −1)A−1
22 − 1

k A−1
22 Z

0 − 1
k Z′A−1

22 B−1 + 1
k Z′A−1

22 Z

σ
−2
g
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1. Model with SNPs and residual polygenic effects

In Liu et al. the data model only included the aggregate breeding values u2.
... Not the marker effects!

We can as well model y using the marker effects and RPG separately

y = Xb+

[
W1 0 0
0 W2 W2Z

]u1
a2
g

+e

Now we need the variance

H∗σ2
g = var

u1
a2
g
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Variance structure H∗

We can write a matrix S to map the u2and Zg into a2

S

u1
u2
g

=

 I 0 0
0 I −Z
0 0 I

u1
u2
g

=

 u1
u2−Zg

g

=

u1
a2
g


Now we get the variance structure for the mapped function

var

u1
a2
g

= SHS′ =

 I 0 0
0 I −Z
0 0 I

var

u1
u2
g

 I 0 0
0 I 0
0 −Z′ I

= H∗σ2
g
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And the inverse

H−1
∗ =

 I 0 0
0 I 0
0 Z′ I

H−1

 I 0 0
0 I Z
0 0 I



=

 A11 A12 A12Z
A21 A22 +( 1

k −1)A−1
22 (A22−A−1

22 )Z
Z′A21 Z′(A22−A−1

22 ) Z′(A22−A−1
22 )Z+B−1

σ
−2
g

=

H11
∗ H12

∗ H13
∗

H21
∗ H22

∗ H23
∗

H31
∗ H32

∗ H33
∗

σ
−2
g
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MME for ssSNP-BLUP

Model equations for all the observations[
y1
y2

]
=

[
X1
X2

][
b
]
+

[
W1 0
0 W2

][
u1
a2

]
+

[
0

W2Z

][
g
]
+

[
e1
e2

]

The mixed model equations




X′X X′1W1 X′2W2 X′2W2Z
W′1X1 W′1W1 0 0
W′2X2 0 W′2W2 W′2W2Z

Z′W′2X2 0 Z′W′2W2 Z′W′2W2Z

+λ


0 0 0 0 0
0 0 0 0 0
0 0 H11

∗ H12
∗ H13

∗
0 0 H21

∗ H22
∗ H23

∗
0 0 H31

∗ H32
∗ H33

∗





b̂
û1
â2
ĝ

=


X′y
W′1y
W′2y

Z′W′2y



where λ = σ2
e /σ2

g

9 Esa Mäntysaari, Ismo Strandén EAAP 2016 © Natural Resources
Institute Finland



MME


X′X X′1W1 X′2W2 X′2W2Z

W′1X1 W′1W1 +λA11
λA12

λA12Z
W′2X λA21 W′2W2 +λA22 +λ( 1

k −1)A−1
22 W′2W2Z+λ(A22−A−1

22 )Z
Z′W′2X2 λZ′A21 Z′W′2W2 +λZ′(A22−A−1

22 ) Z′W′2W2Z+λZ′(A22−A−1
22 )Z+λB−1




b̂
û1
â2
ĝ

=


X′y
W′1y
W′2y

Z′W′2y



We can redefine/rename the marker design matrix for phenotypes: W2Z = Z2
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â2
ĝ
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The model bounds logically: if k –> 1.0 then we have animal model MME
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û1
â2
ĝ

=


X′y
W′1y
W′2y
Z′2y


The model bounds logically: if k –> 0.0 then we have Legarra & Ducroq (JDS 2012)



MME version with projection matrices

An alternative form can be presented using the projection matrix P:

(A22−A−1
22 ) = A22− (A22−A21(A11)−1A12) = A22−A22 +A21(A11)−1A12

= P′A11P

This is because projection matrix can be written either A12A−1
22 or −(A11)−1A12 .

With the terms of projection matrix, we can rewrite the MME:


X′X X′1W1 X′2W2 X′2Z2

W′1X1 W′1W1 +λA11
λA12

λA12Z
W′2X λA21 W′2W2 +λA22 +λ ( 1

k −1)A−1
22 W′2Z2−λA21PZ

Z′2X2 λZ′A21 Z′2W2−λZ′P′A12 Z′2Z2 +λZ′P′A11PZ+λB−1




b̂
û1
â2
ĝ

=


X′y
W′1y
W′2y
Z′2y





ssSNP-BLUP Discussion
• It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the

genotyped animals
I MME are logical: genotyped animals have 2 separate contributions

• Computationally feasible
I “standard ssGBLUP”: each PCG iteration round involves one “solve” A−1

22 da2
I ssSNP-BLUP: each iteration requires 2 solves [A−1

22 da2 and A−1
22 dZg]

expected computing time small

• Numerical (iteration) properties better than in augmented GBLUP if the proportion of
polygenic variance in model is low

I This in our test runs with small 74000 animals data
- only 2885 genotyped animals
- but 38 000 markers
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2. From ss-GBLUP to ssTBLUP
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ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

 X′X X′1W1 X′2W2
W′1X1 W′1W1 +λA11

λA12

W′2X λA21 W′2W2 +λA22 +λM

 b̂
û1
û2

=

 X′y
W′1y
W′2y


where M = G−1

k −A−1
22

with
Gk = (kA22 +ZBZ′)

�

�

�

�
Note that inverse of Gk can be derived from Woodbury matrix identity

G−1
k = (kA22 +ZBZ′)−1

=
1
k

A−1
22 −

1
k

A−1
22 Z(

1
k

Z′A−1
22 Z+B−1)−1 1

k
Z′A−1

22
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Variance structure for genotyped animals

M = G−1
k −A−1

22

=
1
k

A−1
22 −

1
k

A−1
22 Z(

1
k

Z′A−1
22 Z+B−1)−1 1

k
Z′A−1

22 −A−1
22

= M1−M2

where
M1 = ( 1

k −1)A−1
22

and
M2 = 1

k A−1
22 Z( 1

k Z′A−1
22 Z+B−1)−1Z′A−1

22
1
k

Although M2-matrix looks cumbersome, it is computationally simple because the inverse is only
done for p×p matrix. Or actually inverse is not needed at all....
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Instead of inverting the “coefficent matrix”, make a Cholesky decomposition:

L′L = ( 1
k Z′A−1

22 Z+B−1)

Note that the A−1
22 Z can be calculated using projection matrix formula A−1

22 = A22−A21(A11)−1A12,
which can be solved without inverting the A11 (Strandén et al. EAAP 2016)

L′L = 1
k Z′(A22Z−A21(A11)−1A12Z)+B−1

Finally

M2 =
1
k

A−1
22 ZL−1 L−T Z′A−1

22
1
k

This means that M2 can be written as outerproduct of two rectangular matrices:

M2 = [
1
k

A−1
22 ZL−1] [

1
k

A−1
22 ZL−1]

′
= TT′

In which T has Ngta rows (number of animals genotyped) and Np columns (number of SNPs).
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ssTBLUP Discussion

• In solving the ssGBLUP:

I PCG iteration requires multiplications G−1d and A−1
22 d in each iteration (d is direction vector)

I In state of art implementation, A−1
22 d is formed explicitely using pedigree information

In ssTBLUP program A−1
22 is scaled using 1−k

k , and
the multiplication G−1

k d is replaced by consecutive T(T′d)

I Computing increases linearly on the number of genotyped animals (not quadratically)

• In computation of T, no approximations are needed
–> the solutions are exactly the same as with same Gk in ssGBLUP

• ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix

• computing load in forming T is essentially the same as in projecting (imputing)
the genotypes to their non-genotyped ancestors

I with few animals: flops to make G−1
k < flops to make T

I with large number of animals: flops to make T < flops to make G−1
k
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We are grateful for the data and financing

Thank you for your attention !
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