Single-Step genomic evaluation with many more genotyped animals

Esa Mäntysaari Ismo Strandén

Genetic Research Green Technology Natural Resources Institute Finland (Luke)

EAAP – 67th Annual Meeting, Belfast 29.8 – 2.9. 2016

© Natural Resource Institute Finland

ssGBLUP is computational challenge

- Original single-step genomic evaluations were based on var(u) = H that has the size of N_a (animals in evaluation).
- The critical parts in H⁻¹ are dense matrices G⁻¹ and A⁻¹₂₂ that both have the size of number of genotyped animals N_{gta}.
 - ► In many current (beef and dairy cattle) genomic evaluations N_{gta} >> 150 000

For **A**⁻¹₂₂ sparse matrices are solution (in this session Strandén et al. 2016) For **G**⁻¹ APY is one choice (in this session Misztal 2016)

APY has still finetuning

Existing approaches have still room for improvement

We present 2 alternative computational solutions for large scale single-step genomic evaluations:

- 1. single-step SNP-BLUP revisiting Liu et al. (2014)
 - ► but now modeling observations with SNPs and polygenic BVs
- 2. ssTBLUP using Woodbury matrix identity for \mathbf{G}^{-1} in ssGBLUP • i.e., $(\mathbf{G}_0 + k\mathbf{A}_{22})^{-1} - \mathbf{A}_{22}^{-1}$ replaced by $(\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} + \mathbf{TT'}$

A single-step SNP model: Definitions

Definitions adapted from Liu et al. (2014)

- A mixed linear model in a general form $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{W}\mathbf{u} + \mathbf{e}$, with $\mathbf{u}' = \begin{bmatrix} \mathbf{u}'_1 & \mathbf{u}'_2 \end{bmatrix}$
- For genotyped animals (group2) $\mathbf{u}_2 = \mathbf{Z}\mathbf{g} + \mathbf{a}_2$
- Distribution of SNP marker effects

•
$$var(\mathbf{g}) = \mathbf{B}\sigma_g^2$$

- Let k be the proportion of residual polygenic effect in \mathbf{u}_2 $var(\mathbf{a}_2) = \mathbf{A}_{22}k\sigma_g^2$ and $var(\mathbf{u}_2) = (\mathbf{Z}\mathbf{B}\mathbf{Z}' + k\mathbf{A}_{22})\sigma_g^2 = \mathbf{G}_{22}\sigma_g^2$
- It is possible to write \bm{u}_1 (non-genotyped animals, group 1) $\bm{u}_1 = \bm{P}\bm{u}_2 + \bm{d}$
 - with projection matrix $\mathbf{P} = \mathbf{A}_{12}\mathbf{A}_{22}^{-1}$ and a deviation effect **d**, with $var(\mathbf{d}) = \mathbf{D}\sigma_g^2$

note that
$$D = (A^{11})^{-1}$$

Joint variance of u and g

$$var\begin{bmatrix} \mathbf{u}_1\\ \mathbf{u}_2\\ \mathbf{g}\end{bmatrix} = \mathbf{H}\sigma_g^2$$

Following Liu et al. (2014)

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{0} \\ \mathbf{A}^{21} & \mathbf{A}^{22} + (\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & -\frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z} \\ \mathbf{0} & -\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1} & \mathbf{B}^{-1} + \frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}\mathbf{Z} \end{bmatrix} \sigma_g^{-2}$$

© Natural Resources

1. Model with SNPs and residual polygenic effects

In Liu et al. the data model only included the aggregate breeding values \mathbf{u}_2 Not the marker effects!

We can as well model y using the marker effects and RPG separately

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \begin{bmatrix} \mathbf{W}_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_2 & \mathbf{W}_2\mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{a}_2 \\ \mathbf{g} \end{bmatrix} + \mathbf{e}$$

Now we need the variance

$$\mathbf{H}_{*}\sigma_{g}^{2} = var \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{a}_{2} \\ \mathbf{g} \end{bmatrix}$$

Variance structure \mathbf{H}_{*}

We can write a matrix **S** to map the \mathbf{u}_2 and \mathbf{Zg} into \mathbf{a}_2

$$\boldsymbol{S} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \boldsymbol{g} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I} & -\boldsymbol{Z} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \boldsymbol{g} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 - \boldsymbol{Z} \boldsymbol{g} \\ \boldsymbol{g} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{a}_2 \\ \boldsymbol{g} \end{bmatrix}$$

Now we get the variance structure for the mapped function

$$var\begin{bmatrix} u_1 \\ a_2 \\ g \end{bmatrix} = SHS' = \begin{bmatrix} I & 0 & 0 \\ 0 & I & -Z \\ 0 & 0 & I \end{bmatrix} var\begin{bmatrix} u_1 \\ u_2 \\ g \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & -Z' & I \end{bmatrix} = H_*\sigma_g^2$$

© Natural Resources

And the inverse

$$\begin{split} \mathbf{H}_{*}^{-1} &= \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}' & \mathbf{I} \end{bmatrix} \mathbf{H}^{-1} \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{Z} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} & \mathbf{A}^{12} \mathbf{Z} \\ \mathbf{A}^{21} & \mathbf{A}^{22} + (\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & (\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} \\ \mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1}) & \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} + \mathbf{B}^{-1} \end{bmatrix} \sigma_{g}^{-2} \\ &= \begin{bmatrix} \mathbf{H}_{*}^{11} & \mathbf{H}_{*}^{12} & \mathbf{H}_{*}^{13} \\ \mathbf{H}_{*}^{21} & \mathbf{H}_{*}^{22} & \mathbf{H}_{*}^{23} \\ \mathbf{H}_{*}^{31} & \mathbf{H}_{*}^{32} & \mathbf{H}_{*}^{33} \end{bmatrix} \sigma_{g}^{-2} \end{split}$$

© Natural Resources Institute Finland

MME for ssSNP-BLUP

Model equations for all the observations

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \mathbf{b} \end{bmatrix} + \begin{bmatrix} \mathbf{W}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{a}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{W}_2 \mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{g} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{bmatrix}$$

The mixed model equations

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}_1'\mathbf{W}_1 & \mathbf{X}_2'\mathbf{W}_2 & \mathbf{X}_2'\mathbf{W}_2\mathbf{Z} \\ \mathbf{W}_1'\mathbf{X}_1 & \mathbf{W}_1'\mathbf{W}_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_2'\mathbf{X}_2 & \mathbf{0} & \mathbf{W}_2'\mathbf{W}_2 & \mathbf{W}_2'\mathbf{W}_2\mathbf{Z} \\ \mathbf{Z}'\mathbf{W}_2'\mathbf{X}_2 & \mathbf{0} & \mathbf{Z}'\mathbf{W}_2'\mathbf{W}_2 & \mathbf{Z}'\mathbf{W}_2'\mathbf{W}_2\mathbf{Z} \end{bmatrix} + \lambda \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{H}_1^{11} & \mathbf{H}_1^{12} & \mathbf{H}_1^{33} \\ \mathbf{0} & \mathbf{0} & \mathbf{H}_2^{21} & \mathbf{H}_2^{22} & \mathbf{H}_2^{23} \\ \mathbf{0} & \mathbf{0} & \mathbf{H}_3^{21} & \mathbf{H}_3^{22} & \mathbf{H}_3^{33} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}_1'\mathbf{y} \\ \mathbf{W}_2'\mathbf{y} \\ \mathbf{Z}'\mathbf{W}_2'\mathbf{y} \end{bmatrix}$$

where
$$\lambda = \sigma_e^2/\sigma_g^2$$

Institute Finland

MME

We can redefine/rename the marker design matrix for phenotypes: $W_2Z = Z_2$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_1\mathbf{W}_1 & \mathbf{X}'_2\mathbf{W}_2 & \mathbf{X}'_2\mathbf{W}_2\mathbf{Z} \\ \mathbf{W}'_1\mathbf{X}_1 & \mathbf{W}'_1\mathbf{W}_1 + \lambda\mathbf{A}^{11} & \lambda\mathbf{A}^{12} & \lambda\mathbf{A}^{12} \\ \mathbf{W}'_2\mathbf{X} & \lambda\mathbf{A}^{21} & \mathbf{W}'_2\mathbf{W}_2 + \lambda\mathbf{A}^{22} + \lambda(\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & \mathbf{W}'_2\mathbf{W}_2\mathbf{Z} + \lambda(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} \\ \mathbf{Z}'\mathbf{W}'_2\mathbf{X}_2 & \lambda\mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}'\mathbf{W}'_2\mathbf{W}_2 + \lambda\mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1}) & \mathbf{Z}'\mathbf{W}'_2\mathbf{W}_2\mathbf{Z} + \lambda\mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} + \lambda\mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_1\mathbf{y} \\ \mathbf{W}'_2\mathbf{y} \\ \mathbf{Z}'\mathbf{W}'_2\mathbf{y} \end{bmatrix}$$

We can redefine/rename the marker design matrix for phenotypes: $W_2 Z = Z_2$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}_1'\mathbf{W}_1 & \mathbf{X}_2'\mathbf{W}_2 & \mathbf{X}_2'\mathbf{Z}_2 \\ \mathbf{W}_1'\mathbf{X}_1 & \mathbf{W}_1'\mathbf{W}_1 + \lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} & \lambda \mathbf{A}^{12} \mathbf{Z} \\ \mathbf{W}_2'\mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_2'\mathbf{W}_2 + \lambda \mathbf{A}^{22} + \lambda(\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & \mathbf{W}_2'\mathbf{Z}_2 + \lambda(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} \\ \mathbf{Z}_2'\mathbf{X}_2 & \lambda \mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}_2'\mathbf{W}_2 + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1}) & \mathbf{Z}_2'\mathbf{Z}_2 + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} + \lambda \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}_1'\mathbf{y} \\ \mathbf{W}_2'\mathbf{y} \\ \mathbf{Z}_2'\mathbf{y} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_{1}\mathbf{W}_{1} & \mathbf{X}'_{2}\mathbf{W}_{2} & \mathbf{X}'_{2}\mathbf{W}_{2}\mathbf{Z} \\ \mathbf{W}'_{1}\mathbf{X}_{1} & \mathbf{W}'_{1}\mathbf{W}_{1} + \lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} & \lambda \mathbf{A}^{12} \\ \mathbf{W}'_{2}\mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}'_{2}\mathbf{W}_{2} + \lambda \mathbf{A}^{22} + \lambda(\frac{1}{k} - 1)\mathbf{A}^{-1}_{22} & \mathbf{W}'_{2}\mathbf{W}_{2}\mathbf{Z} + \lambda(\mathbf{A}^{22} - \mathbf{A}^{-1}_{22})\mathbf{Z} \\ \mathbf{Z}'\mathbf{W}'_{2}\mathbf{X}_{2} & \lambda \mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}'\mathbf{W}'_{2}\mathbf{W}_{2} + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}^{-2}_{22}) & \mathbf{Z}'\mathbf{W}'_{2}\mathbf{W}_{2}\mathbf{Z} + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}^{-1}_{22})\mathbf{Z} + \lambda \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_{1} \\ \hat{\mathbf{a}}_{2} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_{1}\mathbf{y} \\ \mathbf{W}'_{2}\mathbf{y} \\ \mathbf{Z}'\mathbf{W}'_{2}\mathbf{y} \end{bmatrix}$$

We can redefine/rename the marker design matrix for phenotypes: $W_2 Z = Z_2$

$$\begin{bmatrix} \textbf{X}'\textbf{X} & \textbf{X}_1'\textbf{W}_1 & \textbf{X}_2'\textbf{W}_2 & \textbf{X}_2'\textbf{Z}_2 \\ \textbf{W}_1'\textbf{X}_1 & \textbf{W}_1'\textbf{W}_1 + \lambda\textbf{A}^{11} & \lambda\textbf{A}^{12} & \lambda\textbf{A}^{12}\textbf{Z} \\ \textbf{W}_2'\textbf{X} & \lambda\textbf{A}^{21} & \textbf{W}_2'\textbf{W}_2 + \lambda\textbf{A}^{22} + \lambda(\frac{1}{k} - 1)\textbf{A}_{22}^{-1} & \textbf{W}_2'\textbf{Z}_2 + \lambda(\textbf{A}^{22} - \textbf{A}_{22}^{-1})\textbf{Z} \\ \textbf{Z}_2'\textbf{X}_2 & \lambda\textbf{Z}'\textbf{A}^{21} & \textbf{Z}_2'\textbf{W}_2 + \lambda\textbf{Z}'(\textbf{A}^{22} - \textbf{A}_{22}^{-1}) & \textbf{Z}_2'\textbf{Z}_2 + \lambda\textbf{Z}'(\textbf{A}^{22} - \textbf{A}_{22}^{-1})\textbf{Z} + \lambda\textbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\textbf{b}} \\ \hat{\textbf{u}}_1 \\ \hat{\textbf{a}}_2 \\ \hat{\textbf{g}} \end{bmatrix} = \begin{bmatrix} \textbf{X}'\textbf{y} \\ \textbf{W}_1'\textbf{y} \\ \textbf{W}_2'\textbf{y} \\ \textbf{Z}_2'\textbf{y} \end{bmatrix}$$

The model bounds logically: if $k \rightarrow 1.0$ then we have animal model MME

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_{1}\mathbf{W}_{1} & \mathbf{X}'_{2}\mathbf{W}_{2} & \mathbf{X}'_{2}\mathbf{W}_{2}\mathbf{Z} \\ \mathbf{W}'_{1}\mathbf{X}_{1} & \mathbf{W}'_{1}\mathbf{W}_{1} + \lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} & \lambda \mathbf{A}^{12} \\ \mathbf{W}'_{2}\mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}'_{2}\mathbf{W}_{2} + \lambda \mathbf{A}^{22} + \lambda(\frac{1}{k} - 1)\mathbf{A}^{-1}_{22} & \mathbf{W}'_{2}\mathbf{W}_{2}\mathbf{Z} + \lambda(\mathbf{A}^{22} - \mathbf{A}^{-1}_{22})\mathbf{Z} \\ \mathbf{Z}'\mathbf{W}'_{2}\mathbf{X}_{2} & \lambda \mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}'\mathbf{W}'_{2}\mathbf{W}_{2} + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}^{-2}_{22}) & \mathbf{Z}'\mathbf{W}'_{2}\mathbf{W}_{2}\mathbf{Z} + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}^{-1}_{22})\mathbf{Z} + \lambda \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_{1} \\ \hat{\mathbf{a}}_{2} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_{1}\mathbf{y} \\ \mathbf{W}'_{2}\mathbf{y} \\ \mathbf{Z}'\mathbf{W}'_{2}\mathbf{y} \end{bmatrix}$$

We can redefine/rename the marker design matrix for phenotypes: $W_2 Z = Z_2$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_1\mathbf{W}_1 & \mathbf{X}'_2\mathbf{W}_2 & \mathbf{X}'_2\mathbf{Z}_2 \\ \mathbf{W}'_1\mathbf{X}_1 & \mathbf{W}'_1\mathbf{W}_1 + \lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} & \lambda \mathbf{A}^{12} \mathbf{Z} \\ \mathbf{W}'_2\mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}'_2\mathbf{W}_2 + \lambda \mathbf{A}^{22} + \lambda (\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & \mathbf{W}'_2\mathbf{Z}_2 + \lambda (\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} \\ \mathbf{Z}'_2\mathbf{X}_2 & \lambda \mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}'_2\mathbf{W}_2 + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1}) & \mathbf{Z}'_2\mathbf{Z}_2 + \lambda \mathbf{Z}'(\mathbf{A}^{22} - \mathbf{A}_{22}^{-1})\mathbf{Z} + \lambda \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_1\mathbf{y} \\ \mathbf{W}'_2\mathbf{y} \\ \mathbf{Z}'_2\mathbf{y} \end{bmatrix}$$

The model bounds logically: if $k \rightarrow 0.0$ then we have Legarra & Ducroq (JDS 2012)

MME version with projection matrices

An alternative form can be presented using the projection matrix **P**:

$$(\mathbf{A}^{22} - \mathbf{A}^{-1}_{22}) = \mathbf{A}^{22} - (\mathbf{A}^{22} - \mathbf{A}^{21}(\mathbf{A}^{11})^{-1}\mathbf{A}^{12}) = \mathbf{A}^{22} - \mathbf{A}^{22} + \mathbf{A}^{21}(\mathbf{A}^{11})^{-1}\mathbf{A}^{12}$$

= **P**' **A**¹¹ **P**

This is because projection matrix can be written either $A_{12}A_{22}^{-1}$ or $-(A^{11})^{-1}A^{12}$.

With the terms of projection matrix, we can rewrite the MME:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}_1'\mathbf{W}_1 & \mathbf{X}_2'\mathbf{W}_2 & \mathbf{X}_2'\mathbf{Z}_2 \\ \mathbf{W}_1'\mathbf{X}_1 & \mathbf{W}_1'\mathbf{W}_1 + \lambda\mathbf{A}^{11} & \lambda\mathbf{A}^{12} & \lambda\mathbf{A}^{12}\mathbf{Z} \\ \mathbf{W}_2'\mathbf{X} & \lambda\mathbf{A}^{21} & \mathbf{W}_2'\mathbf{W}_2 + \lambda\mathbf{A}^{22} + \lambda(\frac{1}{k} - 1)\mathbf{A}_{22}^{-1} & \mathbf{W}_2'\mathbf{Z}_2 - \lambda\mathbf{A}^{21}\mathbf{PZ} \\ \mathbf{Z}_2'\mathbf{X}_2 & \lambda\mathbf{Z}'\mathbf{A}^{21} & \mathbf{Z}_2'\mathbf{W}_2 - \lambda\mathbf{Z}'\mathbf{P}'\mathbf{A}^{12} & \mathbf{Z}_2'\mathbf{Z}_2 + \lambda\mathbf{Z}'\mathbf{P}'\mathbf{A}^{11}\mathbf{PZ} + \lambda\mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}_1'\mathbf{y} \\ \mathbf{W}_2'\mathbf{y} \\ \mathbf{Z}_2'\mathbf{y} \end{bmatrix}$$

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the genotyped animals
 - MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
 - "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{a2}$
 - ► ssSNP-BLUP: each iteration requires 2 solves $[A_{22}^{-1}d_{a2} \text{ and } A_{22}^{-1}d_{Zg}]$

expected computing time small

- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
 - ▶ This in our test runs with small 74000 animals data
 - only 2885 genotyped animals
 - but 38 000 markers

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the genotyped animals
 - MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
 - "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{a2}$
 - ► ssSNP-BLUP: each iteration requires 2 solves $[A_{22}^{-1}d_{a2} \text{ and } A_{22}^{-1}d_{Zg}]$

expected computing time small

- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
 - ▶ This in our test runs with small 74000 animals data
 - only 2885 genotyped animals
 - but 38 000 markers

ssSNP-BLUP Discussion

- It is possible to build a model that adds SNP EFFECTS and RPG EFFECT only for the genotyped animals
 - MME are logical: genotyped animals have 2 separate contributions
- Computationally feasible
 - "standard ssGBLUP": each PCG iteration round involves one "solve" $A_{22}^{-1} d_{a2}$
 - ► ssSNP-BLUP: each iteration requires 2 solves $[A_{22}^{-1}d_{a2} \text{ and } A_{22}^{-1}d_{Zg}]$

expected computing time small

- Numerical (iteration) properties better than in augmented GBLUP if the proportion of polygenic variance in model is low
 - ► This in our test runs with small 74000 animals data
 - only 2885 genotyped animals
 - but 38 000 markers

EAAP 2016

2. From ss-GBLUP to ssTBLUP

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}_1'\mathbf{W}_1 & \mathbf{X}_2'\mathbf{W}_2 \\ \mathbf{W}_1'\mathbf{X}_1 & \mathbf{W}_1'\mathbf{W}_1 + \lambda \mathbf{A}^{11} & \lambda \mathbf{A}^{12} \\ \mathbf{W}_2'\mathbf{X} & \lambda \mathbf{A}^{21} & \mathbf{W}_2'\mathbf{W}_2 + \lambda \mathbf{A}^{22} + \lambda \mathbf{M} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_1 \\ \hat{\mathbf{u}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}_1'\mathbf{y} \\ \mathbf{W}_2'\mathbf{y} \end{bmatrix}$$
$$\mathbf{M} = \mathbf{G}_k^{-1} - \mathbf{A}_{22}^{-1}$$

where

with

$$\mathbf{G}_k = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')$$

Note that inverse of \mathbf{G}_k can be derived from Woodbury matrix identity $\mathbf{G}_k^{-1} = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')^{-1}$ $= \frac{1}{k}\mathbf{A}_{22}^{-1} - \frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}(\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}\mathbf{Z} + \mathbf{B}^{-1})^{-1}\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}$

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_{1}\mathbf{W}_{1} & \mathbf{X}'_{2}\mathbf{W}_{2} \\ \mathbf{W}'_{1}\mathbf{X}_{1} & \mathbf{W}'_{1}\mathbf{W}_{1} + \lambda\mathbf{A}^{11} & \lambda\mathbf{A}^{12} \\ \mathbf{W}'_{2}\mathbf{X} & \lambda\mathbf{A}^{21} & \mathbf{W}'_{2}\mathbf{W}_{2} + \lambda\mathbf{A}^{22} + \lambda\mathbf{M} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_{1} \\ \hat{\mathbf{u}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_{1}\mathbf{y} \\ \mathbf{W}'_{2}\mathbf{y} \end{bmatrix}$$
$$\mathbf{M} = \mathbf{G}_{k}^{-1} - \mathbf{A}_{22}^{-1}$$

where with

$$\mathbf{G}_k = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')$$

Note that inverse of \mathbf{G}_k can be derived from Woodbury matrix identity $\mathbf{G}_k^{-1} = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')^{-1}$ $= \frac{1}{k}\mathbf{A}_{22}^{-1} - \frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}(\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}\mathbf{Z} + \mathbf{B}^{-1})^{-1}\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}$

© Natural Resources

ssGBLUP MME w. residual polygenic effects

Standard single-step GBLUP MME:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'_{1}\mathbf{W}_{1} & \mathbf{X}'_{2}\mathbf{W}_{2} \\ \mathbf{W}'_{1}\mathbf{X}_{1} & \mathbf{W}'_{1}\mathbf{W}_{1} + \lambda\mathbf{A}^{11} & \lambda\mathbf{A}^{12} \\ \mathbf{W}'_{2}\mathbf{X} & \lambda\mathbf{A}^{21} & \mathbf{W}'_{2}\mathbf{W}_{2} + \lambda\mathbf{A}^{22} + \lambda\mathbf{M} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}}_{1} \\ \hat{\mathbf{u}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'_{1}\mathbf{y} \\ \mathbf{W}'_{2}\mathbf{y} \end{bmatrix}$$
$$\mathbf{M} = \mathbf{G}_{k}^{-1} - \mathbf{A}_{22}^{-1}$$

where with

$$\mathbf{G}_k = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')$$

Note that inverse of \mathbf{G}_k can be derived from Woodbury matrix identity $\mathbf{G}_k^{-1} = (k\mathbf{A}_{22} + \mathbf{Z}\mathbf{B}\mathbf{Z}')^{-1}$ $= \frac{1}{k}\mathbf{A}_{22}^{-1} - \frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}(\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}\mathbf{Z} + \mathbf{B}^{-1})^{-1}\frac{1}{k}\mathbf{Z}'\mathbf{A}_{22}^{-1}$

Institute Finland

Variance structure for genotyped animals

$$\mathbf{M} = \mathbf{G}_{k}^{-1} - \mathbf{A}_{22}^{-1} \\ = \frac{1}{k} \mathbf{A}_{22}^{-1} - \frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} (\frac{1}{k} \mathbf{Z}' \mathbf{A}_{22}^{-1} \mathbf{Z} + \mathbf{B}^{-1})^{-1} \frac{1}{k} \mathbf{Z}' \mathbf{A}_{22}^{-1} - \mathbf{A}_{22}^{-1} \\ = \mathbf{M}_{1} - \mathbf{M}_{2}$$

where

$$\mathbf{M}_1 = (\frac{1}{k} - 1)\mathbf{A}_{22}^{-1}$$

and

$$\mathbf{M}_{2} = \frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} (\frac{1}{k} \mathbf{Z}' \mathbf{A}_{22}^{-1} \mathbf{Z} + \mathbf{B}^{-1})^{-1} \mathbf{Z}' \mathbf{A}_{22}^{-1} \frac{1}{k}$$

Although M_2 -matrix looks cumbersome, it is computationally simple because the inverse is only done for $p \times p$ matrix. Or actually inverse is not needed at all....

EAAP 2016

15

Instead of inverting the "coefficent matrix", make a Cholesky decomposition:

$$L'L = (\frac{1}{k}Z'A_{22}^{-1}Z + B^{-1})$$

Note that the $A_{22}^{-1}Z$ can be calculated using projection matrix formula $A_{22}^{-1} = A^{22} - A^{21}(A^{11})^{-1}A^{12}$, which can be solved without inverting the A^{11} (Strandén et al. EAAP 2016)

$$L'L = \frac{1}{k}Z'(A^{22}Z - A^{21}(A^{11})^{-1}A^{12}Z) + B^{-1}$$

Finally

$$\mathbf{M}_{2} = \frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} \mathbf{L}^{-1} \mathbf{L}^{-T} \mathbf{Z}' \mathbf{A}_{22}^{-1} \frac{1}{k}$$

This means that M_2 can be written as outerproduct of two rectangular matrices:

$$\mathbf{M}_{2} = \left[\frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}\mathbf{L}^{-1}\right] \left[\frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}\mathbf{L}^{-1}\right]' = \mathbf{T}\mathbf{T}'$$

In which **T** has N_{gta} rows (number of animals genotyped) and N_p columns (number of SNPs).

EAAP 2016

Instead of inverting the "coefficent matrix", make a Cholesky decomposition:

$$L'L = (\frac{1}{k}Z'A_{22}^{-1}Z + B^{-1})$$

Note that the $A_{22}^{-1}Z$ can be calculated using projection matrix formula $A_{22}^{-1} = A^{22} - A^{21}(A^{11})^{-1}A^{12}$, which can be solved without inverting the A^{11} (Strandén et al. EAAP 2016)

$$L'L = \frac{1}{k}Z'(A^{22}Z - A^{21}(A^{11})^{-1}A^{12}Z) + B^{-1}$$

Finally

$$\mathbf{M}_2 = \frac{1}{k} \mathbf{A}_{22}^{-1} \mathbf{Z} \mathbf{L}^{-1} \mathbf{L}^{-T} \mathbf{Z}' \mathbf{A}_{22}^{-1} \frac{1}{k}$$

This means that M_2 can be written as outerproduct of two rectangular matrices:

$$\mathbf{M}_{2} = [\frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}\mathbf{L}^{-1}] [\frac{1}{k}\mathbf{A}_{22}^{-1}\mathbf{Z}\mathbf{L}^{-1}]' = \mathbf{T}\mathbf{T}'$$

In which T has N_{gta} rows (number of animals genotyped) and N_p columns (number of SNPs).

EAAP 2016

- In solving the ssGBLUP:
 - PCG iteration requires multiplications $\mathbf{G}^{-1}\mathbf{d}$ and $\mathbf{A}_{22}^{-1}\mathbf{d}$ in each iteration (**d** is direction vector)
 - In state of art implementation, $\mathbf{A}_{22}^{-1}\mathbf{d}$ is formed explicitly using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_k^{-1}\mathbf{d}$ is replaced by consecutive $\mathbf{T}(\mathbf{T}'\mathbf{d})$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of T, no approximations are needed
 the solutions are exactly the same as with same G_k in ssGBLU
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming **T** is essentially the same as in projecting (imputing) the genotypes to their non-genotyped ancestors
 - ► with few animals:
 - with large number of animals:

- In solving the ssGBLUP:
 - PCG iteration requires multiplications $\mathbf{G}^{-1}\mathbf{d}$ and $\mathbf{A}_{22}^{-1}\mathbf{d}$ in each iteration (**d** is direction vector)
 - In state of art implementation, $\mathbf{A}_{22}^{-1}\mathbf{d}$ is formed explicitly using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_k^{-1}\mathbf{d}$ is replaced by consecutive $\mathbf{T}(\mathbf{T}'\mathbf{d})$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of T, no approximations are needed
 the solutions are exactly the same as with same G_k in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming **T** is essentially the same as in projecting (imputing) the genotypes to their non-genotyped ancestors
 - ► with few animals:
 - with large number of animals:

- In solving the ssGBLUP:
 - PCG iteration requires multiplications $\mathbf{G}^{-1}\mathbf{d}$ and $\mathbf{A}_{22}^{-1}\mathbf{d}$ in each iteration (**d** is direction vector)
 - In state of art implementation, $\mathbf{A}_{22}^{-1}\mathbf{d}$ is formed explicitly using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_k^{-1}\mathbf{d}$ is replaced by consecutive $\mathbf{T}(\mathbf{T}'\mathbf{d})$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of T, no approximations are needed
 the solutions are exactly the same as with same G_k in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming **T** is essentially the same as in projecting (imputing) the genotypes to their non-genotyped ancestors
 - ▶ with few animals:
 - with large number of animals:

- In solving the ssGBLUP:
 - PCG iteration requires multiplications $\mathbf{G}^{-1}\mathbf{d}$ and $\mathbf{A}_{22}^{-1}\mathbf{d}$ in each iteration (**d** is direction vector)
 - In state of art implementation, $\mathbf{A}_{22}^{-1}\mathbf{d}$ is formed explicitly using pedigree information

In ssTBLUP program \mathbf{A}_{22}^{-1} is scaled using $\frac{1-k}{k}$, and the multiplication $\mathbf{G}_k^{-1}\mathbf{d}$ is replaced by consecutive $\mathbf{T}(\mathbf{T}'\mathbf{d})$

- Computing increases linearly on the number of genotyped animals (not quadratically)
- In computation of T, no approximations are needed
 the solutions are exactly the same as with same G_k in ssGBLUP
- ssTBLUP has convergence properties of ssGBLUP but avoids making and inverting G matrix
- computing load in forming **T** is essentially the same as in projecting (imputing) the genotypes to their non-genotyped ancestors
 - ► with few animals:
 - with large number of animals:

Natural Resources Institute Finland

