Genetic parameters for a multiple-trait linear model conception rate evaluation

K. Muuttoranta¹, A-M. Tyrisevä¹, E.A. Mäntysaari¹, J.Pösö², G.P. Aamand³, J-Å. Eriksson⁴, U.S. Nielsen⁵ and M. H. Lidauer¹

- ¹ Natural Resources Institute Finland,
- ² Faba Co-op, ³ Nordic Cattle Genetic Evaluation,
- ⁴ Växa Sweden, ⁵ SEGES Cattle

Background

Nordic Cattle Genetic Evaluation (DK, SWE, FIN)

First common fertility evaluation for Nordic dairy cattle (2005)

Updated fertility model (2015)

sire model

animal model

repeatability model multivariate multilactation model

Objectives of the study

Non-return rate → conception rate in the evaluation

Model for variance component estimation needed

Variance components for conception rate

Obstacles of the study

11 complex traits in the same analysis

Modeling conception rate in a multiple trait context

- repeated observations

Sampled data for analyses

Photo:Erkki Oksanen/Luke

From Swedish Red dairy cattle heifers and cows

400 herds with min. 8 first-calvers annually

101 315 females with records10 397 sires with daughters

Traits

- Conception rate [0 or 1] outcome of each Al CR0, CR1, CR2, CR3
 (heifers, 1st, 2nd and 3rd parity)
- **2. Interval from the first to the last service** [days] IFL0, IFL1, IFL2, IFL3
- **3. Interval from calving to the first service** [days] ICF1, ICF2, ICF3

Multivariate multilactation sire model

- 11 traits: heifers + cows (1. 3. parities)
- CR as repeated observations within parities, permanent environment as random effect

Fixed effects:

- herd*birth year (heifers) or herd*calving year (cows)
- year-month effect:
 year month of insemination for CR
 year-month of 1st insemination for IFL
 year-month of calving for ICF
- heifers' first insemination age
- ith insemination for CR

Fixed effects:

- herd*birth year (heifers) or herd*calving year (cows)
- year-month effect:
 year month of insemination for CR
 year-month of 1st insemination for IFL
 year-month of calving for ICF
- heifers' first insemination age
- ith insemination for CR

Random effects:

- sire
- permanent environment (for all 11 traits)
- residual,
 where residual variances for interval traits were fixed to
 2% of the phenotypic variance during REML estimation

Validating "ith insemination" effect by simulation

Data structure in CR

COW	i th Al	CR
100	1	0
100	2	0
100	3	0
100	4	0
100	5	0
100	6	0
100	7	1

COW	i th AI	CR
101	1	1

cow	i th AI	CR
102	1	0
102	2	1

Simulation of conception rate data

- True breeding values & observations simulated for cows with real pedigree
- Based on single trait animal model (h²=0.1)
- CR observations simulated for observed scale
 - probability of success p=0.6
 - repeated observations until success (max.
 10 observations per cow)
- Herd x year and insemination year x month effects simulated to be 0.0
- 5 data replicates

Based on simulation study: genetic trends biased if ith insemination effect excluded

Based on simulation study: environmental trends biased if ith insemination effect excluded

Analyses

 MC-EM REML applied of variance component estimation using the /IIX99 software package **Solving Large Mixed Model Equations**

VCE results

Heritabilities

	Conception rate	Interval from first to last Al	Interval from calving to first Al
Heifers	.017	.020	-
1st parity cows	.017	.024	.049
2 nd parity cows	.021	.037	.025
3 rd parity cows	.024	.041	.032

Genetic and phenotypic correlations within traits: CR

	CR0	CR1	CR2	CR3
CR0		.65	.43	.69
CR1	.03		.90	.95
CR2	.03	.05		.92
CR3	.02	.05	.06	

CR are binomial observations with a variance structure depending on the number of repeated trials service period.

Genetic and phenotypic correlations within traits: ICF

	ICF1	ICF2	ICF3
ICF1		.85	.88
ICF2	.10		.88
ICF3	.08	.11	

19

Conclusions

- Inclusion of ith insemination is crucial, otherwise
 - h² values and genetic correlations inflated
 - trends biased
- Expectation of successful AI affected by the number of previous, unsuccessful Al
- Multiple trait analysis for low-heritable traits was possible

Kaarina Matilainen: "Single-step genomic evaluation for fertility in Nordic Red Dairy Cattle" EAAP 2016, 31th Aug

Thank you!

21 21.11.2016