How to deal with feed efficiency in NTM?

Rasmus S. Stephansen and Morten Kargo
NAV Workshop January 2018

Acknowledgements

Thanks to:
Jan Lassen – Viking Genetics
Jehan F. Ettema - SimHerd
Søren Østergaard – AU & SimHerd
Lars P. Sørensen - SEGES
Comments from NAV Workshop 2017

• Feed efficiency is an important trait in relation to
 • Economic importance
 • Carbon footprint

Why consider feed efficiency?

• Feed costs accounts for approximately 88 % of variable farm costs
• Considered in breeding goals for broilers and slaughter pigs
• Genetic variation is well documented
The overall aim – save feed

Opportunities:
1. Consider maintenance costs
2. Improve metabolic efficiency

Saved Feed

Saved Feed = Maintenance + Metabolic Efficiency
Maintenance

• Smaller cows have less maintenance requirements than big cows

 • ~1 kg dry matter per 100 kg body weight
 • Corresponds to ~30 % of energy requirement
 • 0.18 €/kg DM

Maintenance in relation to NTM

• 3.2 €/ kg MBW

 • Genetic SD 5.3 kg MBW (Manzanilla Pech et al., 2016)
 • Reliability = 0.90

 • NTM value ≈ 1.6 €/index unit
Maintenance requirements

Require knowledge and data from:

- Body weight (heritability ~0.5)
- Correlated traits (genetic correlation >0.45)
 - Stature (heritability ~0.5)
 - Chest width (heritability ~0.3)
 - Body depth (heritability ~0.25)

Residual Feed Intake ~ Metabolic Efficiency (ME)

- The difference between observed and predicted energy requirement

Adapted from VandeHaar et al., 2016
Implications of Metabolic Efficiency

- Easy to identify efficient animals
- Independent of performance
 - No need for adjustment of economic values of other NTM traits
- Complicated trait to evaluate genetically
 - Caused by mobilization
Genetic evaluation of ME

- ME models often assume constant energy requirements per kg ECM across lactation
 - However, energy requirements per kg ECM change across lactation (Li et al., 2017)

Mobilization and ME

- Assuming energy equality is problematic, because:
 - Fat is the most energy efficient body reserve
 - Body reserves mobilized in different periods
 - Water is mobilized together with body protein (4:1)
Simulation study of metabolic efficiency

Results from simulation study

- The economic value of ME is approximately
 - 55.3 €/kg DM (per annual cow)
 - 0.17 €/SFU
 - Corresponds to applied average feed price (0.18 €/SFU)
Metabolic Efficiency in relation to NTM

- 0.18 €/ kg DM

- Genetic SD 206 kg DM in a lactation (Li et al., 2017)
 - Reliability = 0.60

- NTM value ≈ 2.9 €/index unit

Metabolic Efficiency requirements

- Accurate and high amount of feed intake records
 - Most likely from commercial farms – currently difficult to get!

- Energy requirement observations
 - Milk production, maintenance, mobilization, etc.
Conclusion

Saved Feed = Maintenance + Metabolic Efficiency

\[4.5 \text{ €/index unit} = 1.6 \text{ (37\%)} + 2.9 \text{ (63\%)} \]

≈ 40% of economic value for yield