How to deal with feed efficiency in NTM?

Rasmus S. Stephansen and Morten Kargo **NAV Workshop January 2018**

Comments from NAV Workshop 2017

- Feed efficiency is an important trait in relation to
 - **Economic importance**
 - **Carbon footprint**

Why consider feed efficiency?

- Feed costs accounts for approximately 88 % of variable farm costs
- Considered in breeding goals for broilers and slaughter pigs
- Genetic variation is well documented

The overall aim - save feed

Opportunities:

- 1. Consider maintenance costs
- 2. Improve metabolic efficiency

Saved Feed

Saved Feed = Maintenance + Metabolic Efficiency

Maintenance

- Smaller cows have less maintenance requirements than big cows
- ~1 kg dry matter per 100 kg body weight
 - Corresponds to ~30 % of energy requirement
 - 0.18 €/kg DM

Maintenance in relation to NTM

- 3.2 €/ kg MBW
- Genetic SD 5.3 kg MBW (Manzanilla Pech et al., 2016)
 - Reliability = 0.90
- NTM value ≈ 1.6 €/index unit

Maintenance requirements

Require knowledge and data from:

- Body weight (heritability ~0.5)
- Correlated traits (genetic correlation >0.45)
 - Stature (heritability ~0.5)
 - Chest width (heritability ~0.3)
 - Body depth (heritability ~0.25)

Manzanilla Pech et al., 2016

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Residual Feed Intake ~ Metabolic Efficiency (ME)

The difference between observed and predicted energy requirement

Implications of Metabolic Efficiency

- Easy to identify efficient animals
- Independent of performance
 - No need for adjustment of economic values of other NTM traits
- Complicated trait to evaluate genetically
 - Caused by mobilization

Genetic evaluation of ME

- ME models often assumes constant energy requirements per kg ECM across lactation
 - However energy requirements per kg ECM changes across lactation (Li et al., 2017)

Mobilization and ME

- Assuming energy equality is problematic, because:
 - Fat is the most energy efficient body reserve
 - Body reserves mobilized in different periods
 - Water is mobilized together with body protein (4:1)

Results from simulation study

- The economic value of ME is approximately
 - 55.3 €/kg DM (per annual cow)
 - 0.17 €/SFU
 - Corresponds to applied average feed price (0.18 €/SFU)

Metabolic Efficiency in relation to NTM

- 0.18 €/ kg DM
- Genetic SD 206 kg DM in a lactation (Li et al., 2017)
 - Reliability = 0.60
- NTM value ≈ 2.9 €/index unit

Metabolic Efficiency requirements

- Accurate and high amount of feed intake records
 - · Most likely from commercial farms currently difficult to get!
- **Energy requirement observations**
 - Milk production, maintenance, mobilization, etc.

Conclusion

Can be based on current data from practice ©

Require feed intake records ⊕

Saved Feed = Maintenance + Metabolic Efficiency

4.5 €/index unit = 1.6 (37%) + 2.9 (63%)

≈ 40% of economic value for yield

