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ABSTRACT

Experiences from international sire evaluation indi-
cate that the multiple-trait across-country evaluation 
method is sensitive to changes in genetic variance over 
time. Top bulls from birth year classes with inflated 
genetic variance will benefit, hampering reliable rank-
ing of bulls. However, none of the methods available 
today enable countries to validate their national 
evaluation models for heterogeneity of genetic vari-
ance. We describe a new validation method to fill this 
gap comprising the following steps: estimating within-
year genetic variances using Mendelian sampling and 
its prediction error variance, fitting a weighted linear 
regression between the estimates and the years under 
study, identifying possible outliers, and defining a 95% 
empirical confidence interval for a possible trend in the 
estimates. We tested the specificity and sensitivity of 
the proposed validation method with simulated data 
using a real data structure. Moderate (M) and small 
(S) size populations were simulated under 3 scenarios: a 
control with homogeneous variance and 2 scenarios with 
yearly increases in phenotypic variance of 2 and 10%, 
respectively. Results showed that the new method was 
able to estimate genetic variance accurately enough to 
detect bias in genetic variance. Under the control sce-
nario, the trend in genetic variance was practically zero 
in setting M. Testing cows with an average birth year 
class size of more than 43,000 in setting M showed that 
tolerance values are needed for both the trend and the 
outlier tests to detect only cases with a practical effect 
in larger data sets. Regardless of the magnitude (yearly 
increases in phenotypic variance of 2 or 10%) of the 
generated trend, it deviated statistically significantly 
from zero in all data replicates for both cows and bulls 
in setting M. In setting S with a mean of 27 bulls in a 

year class, the sampling error and thus the probability 
of a false-positive result clearly increased. Still, overall 
estimated genetic variance was close to the parametric 
value. Only rather strong trends in genetic variance 
deviated statistically significantly from zero in setting 
S. Results also showed that the new method was sensi-
tive to the quality of the approximated reliabilities of 
breeding values used in calculating the prediction error 
variance. Thus, we recommend that only animals with 
a reliability of Mendelian sampling higher than 0.1 be 
included in the test and that low heritability traits be 
analyzed using bull data sets only.
Key words: international sire evaluation, validation, 
trend, genetic variance

INTRODUCTION

Dairy cattle breeding is a global business, and the 
highest-ranking bulls are sold worldwide. Therefore, 
reliable estimation of the genetic merit of dairy bulls 
originating from different populations and production 
environments is of fundamental importance. Interna-
tional breeding values are currently obtained with a 
multiple-trait across-country evaluation (MACE) 
method, which uses deregressed breeding values from 
national genetic evaluations as observations (Schaeffer, 
1994). The MACE method considers one biological trait 
at a time and accounts for genotype × environment 
interactions by assuming observations from different 
countries as different but genetically correlated traits.

Experience has shown that the MACE method is sen-
sitive to the quality of the national evaluations. Several 
studies have demonstrated that biased genetic trends 
and genetic variance trends in national evaluations 
affect the MACE evaluations. Top bulls from birth 
year classes with inflated genetic variances and bulls 
from countries with overestimated genetic trends in 
their national evaluation benefit from an upward bias 
in ranking (Weigel et al., 1996; Van Doormaal et al., 
1999; Gengler et al., 2000; Miglior et al., 2002; Ducrocq 
et al., 2003).
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To ensure unbiased international evaluation, all par-
ticipating countries are required to validate their na-
tional evaluations. The validation methods (Boichard 
et al., 1995) test whether national evaluations give un-
biased genetic trend estimates, but the homogeneity of 
genetic variance across years has so far not been tested. 
There is an increasing need to test for homogeneity of 
genetic variance, which is one of the basic assumptions 
of the evaluation.

The main cause of heterogeneity of variance (HV) 
is a scaling effect: variance changes with a change in 
the phenotypic mean (Meuwissen et al., 1996; Robert-
Granié et al., 1999; Lidauer et al., 2008). This is ob-
served as animal production levels increase over time 
or because production levels vary among herds, which 
may be due to factors such as different management 
practices and geographical conditions, such as smaller 
herd sizes in mountain areas with harsh environments 
versus high-input systems in lowlands (e.g., Lidauer et 
al., 2008). Today, more and more countries are com-
bining their breeding populations and national genetic 
evaluations. This increases HV due to differences in 
production environments and management practices 
among cows included in the same genetic evaluation. 
Other reasons for HV are related to factors such as se-
lection, use of different breeds and genetic groups in the 
same evaluation, and different mating practices (Meu-
wissen et al., 1996). Precorrection for heterogeneous 
variance may not be sufficient in more complex cases, 
which require more elaborate methods (Meuwissen et 
al., 1996; Robert-Granié et al., 1999; Lidauer et al., 
2008, 2015). Currently, countries follow varying prac-
tices. Yearly standard deviations (SD) of EBV offer a 
simple option for studying trends in genetic variance 
because any changes in genetic variance are generally 
reflected in SD. However, restricted maximum likeli-
hood estimation is a more preferable alternative be-
cause within-year SD of EBV are sensitive to factors 
such as temporal fluctuations in the average number 
of daughters per bull, number of bulls in different age 
classes, changes in the genetic structure of a popula-
tion, and reliability of breeding values (e.g., Miglior et 
al., 1998; Van Doormaal et al., 1999; Miglior et al., 
2002).

Sullivan (1999) suggested a restricted maximum like-
lihood method for estimating within-year genetic vari-
ances by deriving an equation based on Mendelian sam-
pling (MS) and its prediction error variance (PEV). 
Using Sullivan’s method, Miglior et al. (2002) outlined 
a new validation test for the International Bull Evalu-
ation Service (Interbull). Because the computation of 
PEV from large data sets is not feasible, Fikse et al. 
(2003) proposed a procedure that uses approximated 
reliabilities of EBV of animals and their parents. Later, 

Fikse et al. (2005) introduced a framework for obtain-
ing lower and upper bounds of the tolerance interval; 
the test then boiled down to counting the number of 
years for which the across-year estimate of genetic vari-
ance was outside the tolerance interval. The empirical 
tolerance interval for a birth year class was obtained 
by bootstrapping data within that birth year class and 
finding the 0.025 and 0.975 quantiles for the lower and 
upper genetic variance estimates. Any inaccuracies in 
the approximation of PEV values were taken into ac-
count in the lower and upper genetic variance estimates 
by applying a multiplication factor of 0.99 (lower) and 
1.02 (upper) to the approximated PEV. The sensitivity 
and specificity of the test were unknown, calling for fur-
ther research. When the procedure was tested on field 
data, some inconclusive results were obtained. Testing 
with simulated data sets gave reliable results for large 
cow data sets, but the method failed to detect a gener-
ated trend in genetic variance for bulls from small birth 
year classes (Tyrisevä et al., 2011).

Further, Lidauer et al. (2007) developed a full model 
sampling method (FMS) to estimate within-year ge-
netic variances. Although this FMS method and the 
method by Fikse et al. (2003) differ in their way of 
estimating the PEV of MS, they yield relatively simi-
lar results (Lidauer et al., 2007). The FMS approach 
requires simulation of new observations according to 
the model used in the national evaluation system and 
therefore is not easy to implement in a scheme with a 
wide variety of national evaluation models. Based on 
experiences from earlier studies, our aim was to develop 
and test a validation method for HV of MS that would 
be applicable for national evaluations.

MATERIALS AND METHODS

Estimation of Genetic Variance

A univariate animal model can be described as

	 y = Xb + Zu + e,	

where y is a vector of records, b is a vector of fixed 
effects, u is a vector of random animal effects, and e is 
a vector of random residuals. Incidence matrices X and 
Z relate the records to the appropriate effects. Further, 
we assumed that u A~ , ,MVN u uµ σ2( )  with the expected 
value of breeding values defined as μu and covariance 
among breeding values defined as Aσu

2. The breeding 
value of animal i can be further expressed as ui = 1/2(us 
+ ud) + mi, where us and ud are the breeding values of 
the sire and dam of animal i, and mi is the MS of ani-
mal i. Accordingly, the relationship matrix A can be 
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decomposed into A = LDL′, where L traces the flow of 
genes from parents to offspring and D is the diagonal 
matrix of the variance related to MS m (Mrode, 1996). 
Thus, assuming that parents s and d are unrelated and 
noninbred, the genetic variance can be formulated as

	 var var ,u u u mi s d i u u u( ) = +( )+
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showing that the MS variance is one half of the genetic 
variance. Within-year genetic variance σuj

2  can be esti-

mated by using MS and its PEV, as shown by Sullivan 
(1999), which is applied to the validation method ex-
plained in this study:
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where qj is the number of animals in year j, di is the 
inverse of the proportion of genetic variance not ex-
plained by the known parents of animal i, m̂i

2 is the 
squared estimated MS of animal i, and PEV miˆ( ) is the 
PEV of MS. The effect of inbreeding, when applied, 
was accounted for by modifying the coefficient di ac-
cording to the parents’ inbreeding. As the exact values 
for PEV(mi) are difficult to obtain, Fikse et al. (2003) 
proposed to approximate PEV miˆ( ) following Misztal 
and Wiggans (1988) and Misztal et al. (1991). Given 
the reliabilities of EBV, pani values, where ani refers to 
the sire, the dam, or the animal itself, can be calculated 
by defining the information content embedded in sire s 
(ps), dam d (pd), and animal i (pi), assuming that the 
parents are unrelated:
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where α is the residual to genetic variance ratio, • 
denotes elements not known (3 unknowns due to sym-
metry), and

	 b REL RELani EBV EBVani ani
= × −( )α / ,1 	

where RELEBV ani  is EBV reliability. After solving the 
nonlinear equation to obtain the pani values, PEV miˆ( ) 
can be approximated as
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where Ci is the prediction error coefficient of MS and σe
2 

is the residual variance (Fikse et al., 2005).

Statistical Test for the Trend

A weighted linear regression of within-year genetic 
variances σ̂uj

2( ) on year (xj) was fitted to study the exis-

tence of a possible trend:

	 ˆ ,σ α βu j jj
x e2 = + + 	

in which α and β are regression coefficients and ej is a 
residual term. The number of animals in each year class 
was used as the weight. The trend is expressed as a 
percentage relative to genetic variance β σ/ % ,u

2 100×( )  
where σu

2 is the estimated genetic variance averaged 
over years. An empirical 95% confidence interval for the 
trend (β) was calculated by bootstrapping 1,000 sam-
ples with case resampling within year classes. For each 
bootstrap sample, the sampled animals were used to 
calculate yearly variances, after which the above regres-
sion model was fitted and the sample β̂ was estimated. 
A 95% confidence interval was obtained by defining 
0.025 and 0.975 quantiles for the bootstrapped β̂. If the 
confidence interval did not include zero, the trend was 
considered to deviate statistically significantly from 
zero.

Statistical Test for Outliers

We applied an outlier test to detect years with pos-
sible outlier estimates of genetic variance that did not 
fit the linear trend model and to find indications of 
a possible nonlinear trend. Residual terms obtained 
from the regression model fitted on the 1,000 bootstrap 
samples were used to detect outliers. A 95% confidence 
interval for each ej was obtained by finding the 0.025 
and 0.975 quantiles of the bootstrapped residuals. We 
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used a Bonferroni correction for the N independent 
tests, N being the total number of years included in the 
analyses. If the confidence interval did not include zero 
for some year, then the variance estimate for this year 
was considered a statistical outlier.

Sensitivity and Robustness of the Validation Method

A simulation study was carried out to assess the con-
ditions necessary for the validation method to have the 
required sensitivity but also sufficient robustness. The 
aims were (1) to assess the accuracy of the estimated 
genetic variance by validating it against a reference 
method, (2) to assess the sensitivity to accuracy of ap-
proximation of MS reliabilities, (3) to evaluate the effect 
of inbreeding on the estimates, and (4) to determine 
the sensitivity of the final validation test (MS variance 
test; MSVT) to detect HV. The simulations (Figure 1) 
were performed under 3 scenarios: 1 scenario with ho-
mogeneous variance (control; C) and 2 scenarios with 
phenotypic variance increasing over time by either 2% 
(T2) or 10% (T10) per year. To test the performance 
of the method on scenarios closely resembling field data 
conditions, the simulated scenarios were based on 2 real 
data sets (moderate and small size) and a currently 
used evaluation model. For each tested scenario we 
simulated 20 independent data replicates.

Creating Data Sets Representing Moderate and 
Small Size Populations. Cows with protein yield 
test-day observations from Danish Holstein herds were 
sampled for yield traits from the joint Nordic test-day 
data, excluding 5% of the largest herds as a first editing 

step. To create a data set representing a moderate-size 
national population (M), herds were required to have 
at least 6 heifers calving in a calving year for at least a 
10-yr period starting from 1991. The sampled cows had 
to have at least 1 observation during the first 70 DIM in 
first parity. A maximum of 3 parities were included for 
a cow. Of the 5,253 herds fulfilling these requirements, 
we randomly sampled 2,000 herds, comprising 13 mil-
lion protein yield test-day observations of 756,537 cows 
and covering a time interval of 22 yr. The pruned pedi-
gree included 1.2 million animals. The average number 
of animals per birth year class was 43,605 for cows and 
290 for bulls.

To study the performance of the validation method 
for a data set representing a small bull population, we 
created a small data set (S) by sampling all sires having 
at least 1,000 daughters in setting M and about 8% of 
sires with fewer than 1,000 daughters in setting M. All 
the daughters of these sires as well as the dams of these 
daughters were selected for the subsample, resulting 
in a similar daughter distribution as in setting M but 
with 30% less data. Thus, setting S comprised 9 million 
protein yield test-day observations of 483,410 cows over 
a 22-yr time interval. The pruned pedigree included 0.9 
million animals. The average and minimum birth year 
class sizes for bulls were 27 and 16, respectively.

Generating Phenotypes. Data replicates for the 
simulation study were formed by replacing original field 
data observations with simulated protein yield observa-
tions. The simulated observations were based on the 
evaluation model and variance components used in the 
Nordic test-day model relevant for Danish protein yield 

Figure 1. Design of the simulation study. Inb (no inb) refers to modeling (not modeling) of inbreeding in the prediction of breeding values 
and estimation of within-year genetic variances. For each tested scenario, 20 independent data replicates were simulated. FMS = full model 
sampling; MS = Mendelian sampling; MSVT = Mendelian sampling variance test. Color version available online.
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observations. The applied multiple-trait random regres-
sion test-day model included fixed effects, a random 
herd test-day effect, a random regression on DIM 
nested within herd, covariance functions for nonaddi-
tive genetic and additive genetic animal effects, and a 
random residual effect, as explained in Lidauer et al. 
(2015). Observations �y( ) were formed by summing for 
each observation all the corresponding simulated model 
effects and adding a random error term (Lidauer et al., 
2007, 2008). The simulated true fixed effects and ge-
netic group effects were from preliminary evaluation 
runs for both M and S settings using original field data 
observations, whereas the simulated true values for all 
random factors in the model were generated from nor-
mal distributions by using the Cholesky decomposition 
of the variance–covariance matrices of the applied vari-
ance components. In simulating the true additive ge-
netic effects, the covariance structure between animals 
was accounted for by utilizing the Cholesky decomposi-
tion of the numerator relationship matrix following 
Matilainen et al. (2012). Random residuals were drawn 
from a multivariate normal distribution assuming that 
residuals were uncorrelated across lactation and across 
parities. To accomplish a yearly increase in phenotypic 
variance over time for scenarios T2 and T10, we applied 
production month–specific scaling factors to the gener-
ated observations.

EBV and Their Reliabilities. Combined 305-d 
breeding values across the first 3 lactations were used 
for validation of the new method. These were formed 
by deriving 305-d breeding values from the cows’ co-
variance functions for additive genetic effects for each 
lactation and by calculating the weighted sum over 
lactations using weights of 0.5, 0.3, and 0.2 for first, 
second, and third lactations, respectively (NAV, 2017). 
The genetic variance of the constructed 305-d combined 
protein yield was 247 kg2, and the corresponding heri-
tability was 0.35. We used MiX99 software in all steps 
of the simulations (MiX99 Development Team, 2016). 
Breeding value reliabilities were approximated accord-
ing to Misztal and Wiggans (1988) and implemented 
in MiX99.

Assessing the Accuracy of Estimated Genetic 
Variance. To assess the accuracy of the variance 
estimates, we compared the estimates of within-year 
genetic variances obtained with the MSVT with those 
obtained with the FMS method (Lidauer et al., 2007). 
The latter is based on the idea of García-Cortés et al. 
(1995) to use resampling to calculate PEV, which is 
often impossible to calculate exactly. For each replicate 
of the simulation, we therefore resampled r independent 
data sets having the exact same structure as the origi-
nal data set of that replicate. The true and estimated 

MS deviations from each resampled data set were used 
to calculate PEV. Equation 1 can be reformulated as
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where m̂i is the MS estimate solved from the original 
data set of that replicate, �mir is the simulated true MS 
of the resampled data set r, and �̂mir is its estimate 
solved from the resampled data set r (Lidauer et al., 
2007). Comparisons of the methods were carried out 
only for setting M under scenario C (Figure 1) without 
accounting for inbreeding in the simulations; the effect 
of inbreeding was studied in a separate analysis pre-
sented in a later section. For PEV calculation in Equa-
tion 4, 5 resampled data sets were simulated in the 
same manner as explained in the section “Generating 
Phenotypes” for each of the 20 replicates, from which 
true breeding values and EBV were calculated to ob-
tain the corresponding MS applied in Equation 4.

Sensitivity to Accuracy in Approximation of 
MS Reliabilities. The analyses carried out in this 
study and the reanalyses of the field data sets used for 
testing the first version of the MSVT (Fikse et al., 2003) 
indicated that the new method for genetic variance es-
timation was sensitive to the level of EBV reliability. 
Therefore, we conducted further analyses using differ-
ent data edits under scenario C to study the sensitivity 
of within-year genetic variance estimation with respect 
to the level of approximated reliabilities (Figure 1). 
First, setting M including animals with EBV reliability 
values of 0.50 or higher (data edit 1) was compared 
with the results obtained using the complete data. This 
limit was chosen because although the overall average 
EBV reliability across the data for cows was 0.51, it 
was clearly below this average in the most challenging 
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birth year classes (1988 and 2009). When the test is 
applied in field conditions, however, data sets cannot 
be restricted by the level of EBV reliability without 
causing a possible selection bias. Therefore, instead 
of EBV reliability, we evaluated the reliability of MS 
as a criterion for excluding animals that would cause 
numerical instability in solving the nonlinear Equation 
2. The MS reliability was derived as follows:

	 REL
PEV m C
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i e
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where C is the quadratic form given in Equation 3. We 
tested different lower thresholds empirically for MS re-
liability and compared the results with those obtained 
on the complete data and those obtained with the FMS 
method on the complete data. Further, we studied the 
distribution of EBV reliabilities of the animals and 
their parents when the data were edited based on the 
animal’s MS reliability value. These preliminary studies 
showed that an MS reliability of 0.1 was the lowest pos-
sible criterion for exclusion of animals causing numeri-
cal instability in the estimation. Hence, we selected it 
as the second data editing criterion (data edit 2).

The overall level of reliability for cows is well known 
to be lower than that for bulls. To determine the con-
sequences of data edit 2 for cow data sets in the case 
of traits with low heritability (i.e., how many records 
a cow should have to obtain an MS reliability value 
of 0.1), we performed model calculations using GNU 
Octave (Eaton et al., 2016). A simple repeatability 
animal model, including a mean and random perma-
nent environmental and animal effects, was fitted to 
the data. The data consisted of 1 sire having either 
10 or 100 daughters, the dams of the daughters being 
unrelated and with only 1 offspring. The daughters and 
their dams had an equal number of records (from 1 
to 10). In the case of only 1 record, the repeatability 
animal model was reduced to an animal model. We as-
sumed a heritability of 0.1 and genetic variance of 1 for 
the trait under examination. A repeatability of 0.2 was 
assumed in the case of more than 1 observation. The 
MS reliability values for cows were calculated for each 
combination by using full inverse of C. The heritability 
of 0.1 was considered to describe an upper limit of the 
lowly heritable traits. The above model calculations 
were done to provide an indication if the validation test 
is applicable for cows in case of traits with a heritability 
of 0.1 or lower if data edit 2 is applied.

Effect of Inbreeding on Estimates of Genetic 
Variance. The effect of inbreeding was analyzed in set-
ting M under scenario C (Figure 1). The inbreeding was 
taken into consideration in generating the phenotypes 

for this part of the study. We examined the following 
alternatives: inbreeding was accounted for only in EBV 
prediction, inbreeding was accounted for only in esti-
mation of within-year genetic variances, inbreeding was 
accounted for in both of these, or inbreeding was not 
modeled at all. For each alternative, 20 independent 
data replicates were simulated. The analyses of T2 and 
T10 and all analyses in setting S were carried out with-
out modeling inbreeding, and the reliabilities of EBV 
were approximated in all cases without accounting for 
inbreeding.

Sensitivity of MSVT to Detect HV. For the 
MSVT, we selected bulls born in 1986 to 2006 and hav-
ing daughters in at least 10 herds in both M and S 
settings. Cows born in 1988 to 2008 were included in 
the corresponding cow data sets. The validation tests 
were carried out for all 3 scenarios by applying data 
edit 2 (Figure 1). The analyses were performed with a 
program tailored specifically for this purpose (Tyrisevä 
et al., 2017). We excluded the last birth year (2009) in 
the complete data for cows following the recommenda-
tion by Tyrisevä et al. (2017) that each birth year class 
size should be at least half the average class size within 
the testing period.

RESULTS AND DISCUSSION

Accuracy of Estimates of Genetic Variance

The overall genetic variance for cows, averaged over 
the 20 replicates, was 245.4 kg2 ± 0.10 with the MSVT 
and 252.7 kg2 ± 0.13 with the FMS under scenario C 
(Figure 2). The corresponding genetic variance for bulls 
was 245.4 kg2 ± 1.08 with the MSVT and 253.5 kg2 ± 
1.20 with the FMS (Figure 3). Thus, the FMS method 
gave a slightly higher overall level of genetic variance 
than the MSVT. The difference between average simu-
lated genetic variance and the genetic variance (247 
kg2) applied to simulated breeding values was −0.7% 
with the MSVT and around 2.5% with the FMS. Hence, 
both estimation methods resulted in slightly biased es-
timates, but the bias was consistent across years and 
therefore the methods are deemed suitable for testing 
the existence of trends in variance.

Accuracy of Approximation of MS Reliabilities

With the MSVT method, the use of complete data 
and modeling of inbreeding resulted in notable peaks in 
genetic variance estimates for cows belonging to the first 
(1988) and last (2009) birth year classes, as reported by 
Tyrisevä et al. (2012) and illustrated in Figure 4 using 
results from 1 replicate. The same was not seen in esti-
mates obtained with the FMS method (Tyrisevä et al., 
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2012). Birth year classes 1988 and 2009 with notable 
peaks differed in several ways from other birth year 
classes. The average number of observations for cows 
born in 1988 (2009) was zero (1) compared with 14 in 
the other classes. Further, the average EBV reliability 
for cows born in 1988 (2009) was 0.37 (0.42), whereas 

it was 0.51 in the other classes. Also, the third quartiles 
of the EBV reliabilities in the outermost classes were 
low: 0.46 (1988) and 0.45 (2009). As expected, the sires 
of the cows in these 2 birth year classes also received 
slightly lower EBV reliabilities than those in the other 
classes. Moreover, the dams of cows born in 1988 had 
the lowest EBV reliability values on average compared 
with the dams of cows in all other birth year classes. 
When all cows with EBV reliability lower than 0.50 
were removed from the data, both peaks disappeared 
and the overall level of genetic variance approached 
that obtained with the FMS method (Figure 4). No 
such peaks in genetic variance estimates were detected 
for bull data, as also reported previously by Tyrisevä 
et al. (2012). The above results indicate that the FMS 
method is clearly more robust than the MSVT to data 
with low reliability values.

When EBV reliability is used as the editing criterion, 
animals with many lactations or many progeny are 
more likely to be included in the analysis (data edit 
1). Thus, to avoid a possible selection bias, we decided 
to study the usability of MS reliability instead of EBV 
reliability as a criterion. Empirical testing suggested 
that an MS reliability of 0.1 was the lowest possible 
value with no effect on the estimates. After editing the 
data accordingly (data edit 2), the EBV reliabilities of 
the qualifying animals ranged from 0.25 to 0.82. Thus, 

Figure 2. Within-year genetic variances (varG) for cows obtained 
with full model sampling (FMS) and Mendelian sampling variance test 
(MSVT). Results are averaged over the 20 replicates from scenario C 
(control). Only cows with Mendelian sampling reliability higher than 
0.1 were included in the MSVT analyses. The FMS results were based 
on 5 FMS samples. The simulated value 247 kg2 is marked with a 
straight (red) line. Color version available online.

Figure 3. Within-year genetic variances (varG) for bulls obtained 
with full model sampling (FMS) and Mendelian sampling variance test 
(MSVT). Results are averaged over 20 replicates from scenario C (con-
trol). Only bulls with Mendelian sampling reliability higher than 0.1 
were included in the MSVT analyses. The FMS results were based on 
5 FMS samples. The simulated value 247 kg2 is marked with a straight 
(red) line. Color version available online.

Figure 4. Effect of the data edits and modeling of inbreeding on 
estimates of within-year genetic variances (varG) for cows. Results 
are from 1 replicate under scenario C (control). Inb (noinb) refers to 
modeling (not modeling) of inbreeding in the prediction of breeding 
values and estimation of within-year genetic variances. EBV REL > 
0.49 refers to data edit 1, in which only animals with EBV reliability 
equal to or greater than 0.50 were included. Mendelian sampling vari-
ance test (MSVT) alone refers to the approach proposed as the final 
validation test, in which inbreeding was not modeled and only animals 
with Mendelian sampling reliability higher than 0.1 were analyzed. 
FMS = full model sampling. Color version available online.
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although low reliability values still existed, the peaks 
observed with unedited data were no longer detected. 
When animals were excluded from the analyses based 
on the criterion of 0.1 MS reliability and inbreeding was 
not modeled, we obtained estimates very close to those 
obtained with the FMS method (Figure 4). Fikse et al. 
(2003) further observed that the accuracy of genetic 
variance estimated with the MSVT was associated 
with the PEV level, and this, in turn, was affected by 
the level of the approximated EBV reliabilities. After 
excluding records with incomplete information and 
animals with MS reliability values of 0.1 or lower, the 
amount of bull data records declined by 0.3% and cow 
data records declined by 26%.

To illustrate the consequences of applying data 
edit 2 on cow data sets with lowly heritable traits, we 
performed model calculations of MS reliability values 
by varying the number of records for cows and for 2 
alternative paternal half-sib group sizes, assuming a 
heritability of 0.1 (Table 1). Results showed that 3 
observations were needed for a cow to attain an MS 
reliability value of 0.1. Thus, a large number of cows 
would not reach the reliability level needed for lowly 
heritable traits. We therefore suggest that only bulls be 
used for analysis of traits having low heritability.

Effect of Inbreeding

The inbreeding coefficient for both cows and bulls in 
setting M under scenario C was around 1% in the earlier 
years and increased to 4.5% in the later years. Figure 
5 summarizes the effect of inbreeding under scenario 
C, averaged over the 20 replicates. When inbreeding 
was accounted for in both EBV prediction and genetic 
variance estimation, the overall estimated genetic vari-
ance was 247 kg2, which is exactly the simulated vari-
ance, but it was lower (236.4 kg2) when inbreeding was 

modeled only in EBV prediction and higher (257.1 kg2) 
when inbreeding was accounted for only in genetic vari-
ance estimation.

The trends in genetic variance were lowest (−0.31%) 
when inbreeding was accounted for only in EBV pre-
diction and highest (0.24%) when inbreeding was ac-
counted for only in genetic variance estimation. The 
trends were closest to zero when inbreeding was ac-
counted for in both the prediction of EBV and the esti-
mation of genetic variance (0.06%) and turned negative 
when inbreeding was not accounted for at all (−0.13%). 
The effect of leaving inbreeding unaccounted for was 
still tolerable. Thus, it appears that ignoring inbreed-
ing in the estimation of genetic variance trends—as is 
the case in many national evaluation models—is not a 
crucial issue.

Sensitivity of the Validation Method to Detect HV

Moderate-Size Populations. For cows, the ob-
served trend in genetic variance estimated in setting 
M under scenario C ranged from 0.02 to 0.13%, the 
average being 0.07% (Table 2). Although the trend was 
close to zero, it deviated statistically significantly from 
zero in 11 of the 20 replicates. We detected a statisti-
cally significant outlier in 8 out of the 20 replicates; 
there were 0.45 outliers on average per replicate. For 
bulls, the average trend in genetic variance was −0.13% 

Table 1. Effect of parental data and the cow’s own data on the 
cow’s Mendelian sampling reliability value (MS REL) assuming 0.1 
heritability

No. of records/cow

MS REL

10 Daughters/sire 100 Daughters/sire

1 0.049 0.051
2 0.083 0.087
3 0.108 0.114
4 0.127 0.134
5 0.143 0.151
6 0.156 0.165
7 0.167 0.176
8 0.176 0.186
9 0.183 0.194
10 0.190 0.201

Figure 5. Effect of inbreeding on within-year genetic variances 
(varG) for bulls. Results are from 20 data replicates under scenario C 
(control). EBV refers to modeling of inbreeding only in breeding value 
prediction, Mendelian sampling variance test (MSVT) refers to model-
ing of inbreeding only in genetic variance estimation, EBV+MSVT 
refers to modeling of inbreeding in both breeding value prediction and 
genetic value estimation, and Noinb indicates that no inbreeding was 
modeled. Color version available online.
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(Table 3), ranging from −0.71 to 0.43% among repli-
cates. The slight overall negative trend was caused by 
inbreeding that was not accounted for. The trend for 

bulls deviated statistically significantly from zero in 1 
replicate only, whereas a statistical outlier was observed 
in 2 replicates.

Table 2. Results of the Mendelian sampling variance test applied to a moderate-size cow population under 
the control with simulated homogeneous variance (scenario C) and under scenarios with a simulated increase 
of 2% (T2) and 10% (T10) in phenotypic variance1

Replicate

Scenario C

 

Scenario T2

 

Scenario T10

Trend (%) H1 H2 Trend (%) H1 H2 Trend (%) H1 H2

1 0.05 NS 0 1.56 SS 1 4.46 SS 2
2 0.08 SS 0 1.60 SS 1 4.50 SS 1
3 0.08 SS 1 1.60 SS 1 4.49 SS 4
4 0.03 NS 0 1.55 SS 0 4.46 SS 2
5 0.06 NS 1 1.57 SS 1 4.48 SS 2
6 0.11 SS 1 1.63 SS 1 4.53 SS 3
7 0.07 SS 0 1.59 SS 1 4.49 SS 4
8 0.02 NS 0 1.54 SS 0 4.44 SS 1
9 0.09 SS 2 1.61 SS 2 4.52 SS 4
10 0.02 NS 0 1.53 SS 0 4.44 SS 2
11 0.11 SS 1 1.63 SS 1 4.53 SS 3
12 0.13 SS 1 1.64 SS 1 4.53 SS 3
13 0.07 SS 0 1.59 SS 0 4.50 SS 2
14 0.09 SS 1 1.61 SS 2 4.51 SS 4
15 0.04 NS 0 1.56 SS 1 4.46 SS 5
16 0.09 SS 1 1.61 SS 2 4.50 SS 3
17 0.07 SS 0 1.58 SS 1 4.48 SS 2
18 0.02 NS 0 1.54 SS 0 4.44 SS 3
19 0.04 NS 0 1.56 SS 0 4.47 SS 4
20 0.05 NS 0 1.57 SS 0 4.47 SS 6
Mean 0.07 11/20 0.45 1.58 20/20 0.80 4.49 20/20 3.0
1H1 refers to the statistical test result for a trend (NS = nonsignificant; SS = significant), and H2 refers to the 
number of statistically significant outliers.

Table 3. Results of the Mendelian sampling variance test applied to a moderate-size bull population under 
the control with simulated homogeneous variance (scenario C) and under scenarios with a simulated increase 
of 2% (T2) and 10% (T10) in phenotypic variance1

Replicate

Scenario C

 

Scenario T2

 

Scenario T10

Trend (%) H1 H2 Trend (%) H1 H2 Trend (%) H1 H2

1 −0.24 NS 0 1.17 SS 0 3.84 SS 0
2 −0.17 NS 0 1.28 SS 0 3.97 SS 0
3 −0.32 NS 0 1.10 SS 0 3.78 SS 0
4 −0.01 NS 0 1.38 SS 0 3.98 SS 0
5 −0.30 NS 1 1.10 SS 1 3.74 SS 1
6 0.14 NS 0 1.55 SS 0 4.15 SS 0
7 −0.14 NS 0 1.25 SS 0 3.83 SS 0
8 −0.17 NS 0 1.29 SS 0 4.01 SS 0
9 0.43 NS 0 1.88 SS 0 4.57 SS 0
10 0.37 NS 0 1.75 SS 0 4.30 SS 0
11 −0.34 NS 0 1.09 SS 0 3.75 SS 0
12 0.37 NS 0 1.77 SS 0 4.34 SS 0
13 −0.34 NS 0 1.09 SS 0 3.77 SS 0
14 −0.32 NS 0 1.12 SS 0 3.82 SS 0
15 0.21 NS 0 1.68 SS 0 4.42 SS 0
16 0.24 NS 0 1.70 SS 0 4.42 SS 0
17 −0.34 NS 0 1.11 SS 0 3.82 SS 0
18 −0.71 SS 1 0.73 SS 0 3.43 SS 0
19 −0.43 NS 0 0.98 SS 0 3.63 SS 0
20 −0.52 NS 0 0.91 SS 0 3.60 SS 0
Mean −0.13 1/20 0.1 1.30 20/20 0.05 3.96 20/20 0.05
1H1 refers to the statistical test result for a trend (NS = nonsignificant; SS = significant), and H2 refers to the 
number of statistically significant outliers.
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For cows, a yearly increase of 2% in phenotypic vari-
ance (scenario T2) was observed as an average yearly 
increase of 1.58% in genetic variance (Table 2). The 
observed trends ranged from 1.53 to 1.64% and devi-
ated statistically significantly from zero in all repli-
cates. Statistically significant outliers were found in 13 
replicates out of the 20; thus, their number increased 
under scenario T2 compared with the 8 outliers ob-
served under scenario C. The corresponding trend in 
genetic variance for bulls under scenario T2 was 1.30% 
on average, ranging from 0.73 to 1.88% (Table 3). This 
trend also deviated statistically significantly from zero 
in all data replicates. A statistically significant outlier 
was found only in 1 bull data replicate.

For cows, generating a 10% yearly increase in phe-
notypic variance (scenario T10) resulted in an average 
yearly increase of 4.49% in genetic variance (Table 2). 
As in scenario T2, the trend estimates varied over a 
narrow range: from 4.44 to 4.53%. A statistically signif-
icant genetic variance trend was observed in all the cow 
data replicates. Further, there was a clear increase in 
the average number of outliers (3) under scenario T10 
compared with scenario C. The overall genetic trend for 
bulls (3.96%) under scenario T10 was a bit lower than 
for cows (Table 3, T10). There was also more variation 
in the trend estimates for bulls (from 3.43 to 4.57%) 
than for cows. The trend in genetic variance among 
bulls was statistically significant in all data replicates, 
but in contrast to cows, only 1 statistical outlier was 
found in 1 data replicate.

Although number of significant outliers observed 
under scenario C was in a good agreement with the ex-
pected number of false positives, number of significant 
outliers clearly exceeded the expected false-positive 
rate in scenarios with the increasing trend in genetic 
variance. This is most likely caused by the way the 
genetic variance was simulated. Under the assumption 
that HV is attributed in proportion to all model ef-
fects, an increase in variance was introduced by scaling 
the variance of simulated observations. However, in 
the prediction of breeding values, HV was apparently 
not assigned in proportion to all effects, which caused 
an increase in between-years variation of genetic vari-
ance and, by this, an increase in number of outliers. 
Moreover, the model for prediction of breeding values 
assumed homogeneous (genetic) variance, causing the 
estimated breeding values to show less variance hetero-
geneity than the true breeding values, which explains 
why the obtained trend in genetic variance was on aver-
age smaller than would be expected.

Our results show that the MSVT is able to detect 
a trend in genetic variance rather accurately from a 
moderate-size population, provided that there is one in 
the data. However, the results also illustrate the impor-

tance of applying tolerance values for larger data sets, 
as is the policy for other Interbull validation tests (In-
ternational Bull Evaluation Service, 2017). Field data 
sets can be huge, comprising hundreds of thousands 
of animals in a single year class. Hence, the statistical 
power of the method is high to detect very small de-
viations from a zero trend in genetic variance. Accord-
ingly, a single estimate of within-year genetic variance 
that deviates from its expectation is often likely to be 
identified as a statistically significant outlier in large 
data sets. Therefore, tolerance values are necessary for 
both the trend and the outlier tests to enable detecting 
only those cases that have a real practical effect.

Based on our preliminary studies, a yearly increase of 
2 to 4% in genetic variance may be a tolerable trend 
(Tyrisevä et al., 2012). For testing single outliers, an 
acceptance interval of σ σu u

2 20 10± .  of the average esti-
mated genetic variance was used. This was based on 
considering a 5% hypothetical standard error for the 
estimated variances and defining estimates that deviate 
more than 2 times the standard error (i.e., 10%) as 
failed outliers. The equality corresponds roughly to 
variances estimated from 800 observations; an approxi-
mated estimate of the standard error of σu

2 is 
2 1 2/ .n u−( )σ
Usability of the Validation Method in Small 

Populations. Under scenario C, the average trend 
in genetic variance for bulls in setting S was −0.27% 
(Table 4). The most extreme trend estimates among 
the 20 replicates were −1.78 and 1.95%. Although this 
range is clearly wider than for bulls in setting M (Table 
3), none of the estimates differed statistically from zero 
(Table 4). One to 2 statistical outliers were found in 6 
replicates out of the 20, and again, their proportion was 
higher than for bulls in setting M (2/20). Year-to-year 
variation in the estimates for bulls clearly increased in 
setting S compared with setting M. Nevertheless, the 
overall level of genetic variance estimated from repli-
cates of the small bull population was still close to the 
parametric value (249.4 kg2 ± 3.89 vs. 247 kg2).

The average trend in estimated genetic variance under 
scenario T2 was 1.07%, ranging from −0.55 to 3.28% 
(Table 4). The trend deviated statistically significantly 
from zero in only 3 out of the 20 replicates. Under 
scenario T10, the average trend in genetic variance was 
3.51%, ranging from 1.72 to 5.66% (Table 4). In to-
tal, a statistically significant trend in genetic variance 
was found in 19 of the 20 replicates. No increase was 
observed in the number of statistical outliers in either 
scenario T2 or scenario T10 compared with scenario C.

The above results in setting S show an increase in the 
sampling error and, hence, an increase in the probabil-
ity of obtaining a false-positive result in small popula-
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tions. However, the overall estimated genetic variance 
was still close to the simulated value. When no hetero-
geneity was simulated, no trend in genetic variance was 
detected. On the other hand, the generated trend had 
to be rather strong to differ statistically significantly 
from zero.

CONCLUSIONS

In this study we proposed a method for validating 
the homogeneity of MS variance in national genetic 
evaluation models. The method comprises the follow-
ing steps: estimating within-year genetic variances, 
fitting a weighted linear regression model between the 
estimates and the years under study, identifying pos-
sible outliers, and defining a 95% empirical confidence 
interval for a possible trend. A simulation study was 
conducted to examine the specificity and sensitivity of 
the validation method. Results showed that the overall 
genetic variance estimate obtained by the proposed 
method was close to the value used in simulating the 
breeding values. The results were also in good accor-
dance with the reference method. When no heterogene-
ity was introduced in the generated data representing a 
moderate-size population (setting M), the overall trend 
in genetic variance was practically zero. For bulls, we 
observed statistically significant deviation from a zero 
trend in only 5% of the replicates and a statistically 

significant outlier in 10% of the replicates. However, 
for cows, a practical tolerance value proved necessary 
for both the trend and the outlier tests. Further, the 
MSVT method was able to detect a genetic variance 
trend in all cases in setting M regardless of the mag-
nitude of the generated trend. In a small population 
(setting S), the MS validation test performed rather 
well, although only strong trends in genetic variance 
can be expected to reach statistical significance. Our 
results also indicate that the new method is sensitive to 
the quality of the approximated reliabilities of breeding 
values used to calculate the PEV. Therefore, we recom-
mend that only animals with MS reliabilities higher 
than 0.1 be considered for the validation method and 
that low heritability traits be analyzed using bull data 
sets only.
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