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Summary
The number of genotyped animals has increased rapidly creating computational

challenges for genomic evaluation. In animal model BLUP, candidate animals

without progeny and phenotype do not contribute information to the evaluation

and can be discarded. In theory, genotyped candidate animal without progeny can

bring information into single-step BLUP (ssGBLUP) and affect the estimation of

other breeding values. We studied the effect of including or excluding genomic

information of culled bull calves on genomic breeding values (GEBV) from

ssGBLUP. In particular, GEBVs of genotyped bulls with daughters and GEBVs

of young bulls selected into AI to be progeny tested (test bulls) were studied. The

ssGBLUP evaluation was computed using Nordic test day (TD) model and TD

data for the Nordic Red Dairy Cattle. The results indicate that genomic informa-

tion of culled bull calves does not affect the GEBVs of progeny tested reference

animals, but if genotypes of the culled bulls are used in the TD ssGBLUP, the

genetic trend in the test bulls is considerably higher compared to the situation

when genomic information of the culled bull calves is excluded. It seems that by

discarding genomic information of culled bull calves without progeny, upward

bias of GEBVs of test bulls is reduced.

KEYWORD S

Genomic evaluation, single-step, ssGBLUP

1 | INTRODUCTION

Numerous methods to combine genotype information with
pedigree and phenotypic information have been developed
as the idea of genomic selection was presented for the first
time in animal breeding (Meuwissen, Hayes, & Goddard,
2001). The current methods in dairy cattle evaluations are
mainly based on a multistep procedure (e.g., VanRaden,
2008). In the long run, the multistep approach to calculate
genomic breeding values (GEBV) has at least two inherent
problems which are due to not accounting genomic infor-
mation in the step to calculate EBVs. Firstly, when animals
are selected by their GEBV, the future estimation of unbi-
ased EBVs becomes difficult because genomic information

has been used in breeding selection but cannot be
accounted in all the evaluation steps. Secondly, parent
average (PA) of the progeny of genomically selected ani-
mals has little value as PA does not automatically include
genomic information (Legarra, Christensen, Aguilar, &
Mistztal, 2014).

Single-step genomic evaluation (ssGBLUP) is a unified
approach to calculate GEBV. The ssGBLUP combines the
phenotypic records, pedigree information and genomic
information in the calculation of GEBV (Aguilar et al.,
2010; Christensen & Lund, 2010). The approach integrates
the pedigree relationship matrix A and genomic relation-
ship matrix G into a single H matrix which replaces the
traditional relationship matrix A in the mixed model
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equations (MME) (Aguilar et al., 2010; Christensen &
Lund, 2010). Compared to multistep methods, ssGBLUP
has many advantages such as simplicity, prevention of dou-
ble counting genomic information and resistance to biased
prediction caused by preselection of young animals
(Legarra et al., 2014; Patry & Ducrocq, 2011; VanRaden
& Wright, 2013; Vitezica, Aguilar, Misztal, & Legarra,
2011).

However, there are practical difficulties in genomic
evaluations. The number of genotyped animals has
increased rapidly posing computational challenge for geno-
mic evaluation. It is clear that computing costs will be an
important factor in ssGBLUP with a large number of geno-
typed animals. The methods, such as ssGTBLUP
(M€antysaari, Evans, & Strand�en, 2017; Strand�en, Mati-
lainen, Aamand, & M€antysaari, 2017), ssSNP-BLUP (Fer-
nando, Dekkers, & Garrick, 2014; Taskinen, M€antysaari, &
Strand�en, 2017) or algorithm for proven and young (APY;
Misztal, Legarra, & Aguilar, 2014; Fragomeni et al., 2015),
have been proposed to overcome some of the computa-
tional challenges. The other question is whether we need
all the genotypes in the evaluation? Patry and Ducrocq
(2011) have suggested that it is necessary to include infor-
mation of all genotyped bulls in the evaluations. However,
many genotyped animals have no progeny and no other
information than genotypes. For example, most of the
young genotyped bull calves are not bought for the service
and are culled without any daughter information. If these
animals are omitted from the evaluations, the ssGBLUP
computations could be eased considerably. In animal model
BLUP, candidate animals without progeny and phenotype
do not contribute information and can be discarded from
the evaluation. In theory, genotyped animal without pro-
geny can bring information into ssGBLUP and affect the
estimation of breeding values of other animals. This can
occur when either one or both of the candidate animal’s
parents have not been genotyped, and thus, they will have
own phenotypes or they will get information from other
non-genotyped relatives (sibs or half-sibs). Thus, informa-
tion from culled bull calves might be worthwhile in single-
step evaluations. In fact, in a simulation study of Shabalina
et al. (2017), it was concluded that adding genotypes
of culled animals in some case improve single-step
evaluations.

The aim of this study was to evaluate the effect of
inclusion or exclusion of genomic information of culled
young bull calves without progeny from ssGBLUP. The
focus was on the GEBVs of genotyped reference animals
and GEBVs of young selection bulls, that is young
genotyped bulls bought for service to be progeny tested
(later called as test bulls), and on the effect of culled
bulls on the bull and cow GEBV validation results. The
ssGBLUP with different genomic information was

computed using a random regression test day (TD)
model currently used for the official genetic evaluation
of production traits (Lidauer et al., 2015) in Nordic Red
Dairy Cattle (RDC). To our knowledge, there are no ear-
lier studies with field data that would have investigated
how the inclusion of genotypes of animals without pro-
geny affects the ssGBLUP evaluation.

2 | MATERIALS AND METHODS

The full routine milk production evaluation data from
February 2015 for the RDC were obtained from the Nor-
dic Cattle Genetic Evaluation (NAV). The data included
TD records for milk, fat and protein production. For the
production traits, the TD data included 3.9 million cows
with a total of 87 million records. The pedigree con-
tained ca. 5.2 million animals. Production records from
the first three lactations (five in the Finnish data) are
modelled by a multiple trait random regression TD
model. Each production trait has random regression func-
tion for genetic and permanent environmental effects. For
more information see Lidauer et al. (2015). To validate
the models, a reduced data set was extracted from the
full data. Comparison of the GEBV predictions from the
reduced data with those from the full data allows estima-
tion of validation accuracy (e.g., M€antysaari, Liu, &
VanRaden, 2010).

The marker data from February 2015 included a total of
30,186 genotyped RDC animals. Bulls were genotyped
using the Illumina BovineSNP50 and cows with BovineLD
Bead Chips with the genotypes imputed to the 50K chip
(Illumina, San Diego, CA, USA). After applying editing
criteria, of minor allele frequency of 0.01 and locus aver-
age GenCall score of 0.60, 46,914 markers on the 29
bovine autosomes were used in the analysis. The genotyped
animals can be divided into three different categories. The
first included 20,276 animals with phenotype information,
that is either own or daughter TD records. In this category,
there were 5,696 bulls and 14,580 cows. The second cate-
gory included 1,140 young bulls (called test bulls), which
had been selected into AI to be progeny tested. The third
category included 8,770 culled young bull calves without
progeny. Table 1 shows the structure of the genomic data.
In the Nordic RDS, approximately 3,000 bulls are yearly
selected based on a pedigree index to be genomically
tested. From these, bull calves about the best 100 are
bought for AI based on GEBV, and the rest are culled
(Vikingred, 2017).

The unified relationship matrix H in ssGBLUP defines
the relationships among genotyped and non-genotyped ani-
mals. The inverse of H has a simple structure (Aguilar
et al., 2010; Christensen & Lund, 2010):
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H�1 ¼ A�1 þ 0 0
0 G�1 � A�1

22

� �

where A22 is the submatrix of pedigree-based numerator
relationship matrix A for the genotyped animals, and G is
the genomic relationship matrix constructed using genomic
information. In the MME for ssGBLUP, the only difference
to the normal animal model MME is in the matrix block
H22 ¼ A22 þG�1 � A�1

22 among genotyped animals. Agui-
lar et al. (2010) and Christensen and Lund (2010) noted
that when all genetic variance is not accounted by the SNP
effects, the residual polygenic effect can be included into
the model using G�1

w instead of G�1 in H22, where
Gw = (1-w)G + w A22 and the constant w represent the
proportion of polygenic variance not described by markers.
In this study, we used w = 0.10. Prior to making Gw, the
genomic relationship matrix G was multiplied by scalar
trðA22Þ
trðGÞ such that on average diagonals of pedigree and geno-
mic relationship matrices were the same. We build two dif-
ferent genomic relationship matrices, one including
information of culled young bull calves (Ginc) and another
excluding them (Gexc). The genomic relationship matrices
were calculated by method one of VanRaden (2008). Both
genomic relationship matrices used the same estimated base
population allele frequencies, which were calculated as
described by McPeek, Wu, and Ober (2004). Similar to the
genomic information, also the pedigree files were built dif-
ferently: one included the pedigree information of the
culled bull calves whilst the other did not. Table 2 shows
the numbers of animals in the different pedigrees and H22

matrices.
Misztal, Vitezica, Legarra, Aguilar, and Swan (2013)

noted that when EBV model has unknown parent groups
(UPG), they should be taken into account in the ssGBLUP
MME as well. So far UPGs have usually included informa-
tion from the pedigree-based relationship matrix as in the
regular animal model. Thus, the groups have ignored geno-
mic information, that is contributions due to G�1 � A�1

22

have been ignored in UPG coefficients in MME. Mati-
lainen, Strand�en, Aamand, and M€antysaari (2016) proposed

a method to include the impact of the G�1 and A�1
22 for the

genetic group equations, and this approach was used in our
study. In addition, inbreeding coefficients were accounted
in computation of A�1 in all models.

The analyses were carried out using the NAV routine
evaluation model for EBV milk production (Lidauer
et al., 2015). In the evaluations, multiple trait TD model
is used to estimate EBVs of milk, fat and protein, simul-
taneously. Solutions for the MME of the TD model and
TD ssGBLUP were computed with MiX99 software
using iteration on data and PCG method (Lidauer et al.,
2014). Computations for EBVs and GEBVs were very
similar; the MME for the TD model to solve EBVs used
A�1 which was replaced by alternative H�1 matrices in
the ssGBLUP for GEBV. The PCG method was assumed
to be converged when Ca was less than 10�6. Statistic
Ca is the relative difference between the right-hand and
left-hand side of the MME for all the equations describ-
ing the additive genetic animal effects (Lidauer et al.,
2014). From the TD model solutions, the official
305 days lactation total yield breeding values of milk,
protein and fat were derived and used in the analyses
(Lidauer et al., 2015).

Study set-up consisted of four different full TD evalua-
tions: two normal TD evaluations using different pedigree
information and two ssGBLUP evaluations using different
pedigree and genomic information. These are called (G)
EBVinc, (G)EBVexc referring to models including or
excluding genomic and pedigree information of culled bull
calves, respectively. GEBVs and EBVs from the full TD
models were compared using Pearson rank correlation coef-
ficients with Fisher’s z transformation in SAS (SAS, 2011).
Genetic trends and standard deviations (SD) for production
traits were obtained by averaging the standardized breeding
values of bulls per birth year and comparing the trends
obtained from the different TD models.

Validation of the predictions was carried out using
Interbull validation protocol (M€antysaari et al., 2010). For
the tests, ssGBLUP and normal TD models were computed
using reduced TD data sets. The validation tests were based
on 2 or 4 years of data reduction. For the validation of bull

TABLE 1 The classification of genotyped animals in the marker
data

Genotyped

With TD
records or
daughter
information

Reference bulls 5,696 20,276

Cows 14,580

Selected young AI bulls (test bulls) 1,140

Culled young bull calves 8,770

Genotyped in total 30,186

TABLE 2 A number of animals in the relationship matrices based
on pedigree and genotypes information when the culled bull calves
without progeny have been included or excluded from the analysis

Number of animals in
pedigree

Number of genotyped
animals

Excluding
culled bulls

5,173,381 21,416

Including
culled bulls

5,182,461 30,186
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GEBVs, the last 4 years of observations were removed
from the full data (Rdata4). For the validation of cow
GEBVs, only the last 2 years of TD records were excluded
(Rdata2). The shorter cut-off period was used for cows, to
maintain more female animals with genomic information in
reduced data, whilst still having a sufficient number of val-
idation candidates.

From the reduced data analyses, only the bulls that
had no daughters in the Rdata4, but had their EBV based
on ERC ≥ 3.0 in the full data, were defined as validation
bulls. The ERC (effective record contribution) of 3.0 cor-
responds roughly the phenotypic information obtained
from 20 daughters with observations. The ERCs were cal-
culated by the ApaX99 program (Strand�en, Lidauer,
M€antysaari, & P€os€o, 2001) for all the animals in pedigree
when full data were used. Variance parameters in ERC
approximation were from the average daily TD model,
and the same values (h2milk = 0.48, h2protein = 0.48 and
h2fat = 0.49) were used throughout our study. The geno-
typed cows with no TD records in the Rdata2 and with a
minimum of five TD records in the full data were consid-
ered as validation cows. Finally, we had 673 validation
bulls born between years 2006 and 2009, and 8,572 vali-
dation cows born between 2009 and 2012. The ssGBLUP
with reduced TD data was run using either with all the
genomic data or with excluding the culled bull calves,
and the resulting GEBVs were called as GEBVinc,R and
GEBVexc,R, respectively.

The EBVs for the weighted three lactation averages
were obtained from the full data analysis. These were then
deregressed to get deregressed genetic prediction (DRP) for
bull and cow GEBV validations. DRPs were obtained
using Broyden method in option DeRegress (Strand�en &
M€antysaari, 2010) in MiX99 software. The ERC was used
as weighting factors in the deregression. The three produc-
tion traits were deregressed simultaneously but assuming
genetic and residual correlations to be zero.

The validation test models were as follows:

y ¼ 1b0 þ b1 âþ e

where y is the DRPs of the validation bulls or cows from
the full data, and â is the EBVs or the genomic predictions
for bulls or cows based on the reduced data analysis. The
validation reliability of the model was obtained from the
R2 (coefficient of determination) of the model (R2

model), after
correcting it by the average reliability of DRPs ð�r2DRPÞ of
the validation bulls or cows, that is R2

validation ¼ R2
model=�r

2
DRP

The reliabilities of DRP were calculated as
r2DRPi ¼ ERCi=ðERCi þ kÞ where k = (1 - h2)/h2. To esti-
mate the further gain from the genomic information over
the traditional PA (M€antysaari et al., 2010), the same vali-
dation tests were also applied to PA. Confidence intervals
(CI) were estimated for the regression coefficients (b1) and

the validation reliabilities (R2
validation) using non-parametric

bootstrap (Koivula, Strand�en, P€os€o, Aamand, &
M€antysaari, 2015). The boot and boot.ci functions of the R
package (Canty & Ripley, 2017) were used to calculate
95% bootstrap CIs. Number of bootstrap samples was
10,000.

3 | RESULTS AND DISCUSSION

A number of iterations in solving EBVinc were 4,075, but
with ssGBLUP 3,996 and 3,172, for the GEBVinc and for
the GEBVexc, respectively. The models took approximately
26 or 58 hr using TD animal model or TD ssGBLUP,
respectively, to run with 6 Intel Xeon� 3.6 GHz proces-
sors. The iteration time to calculate GEBVinc was approxi-
mately 19% longer than for GEBVexc, being 52 and 42 s
per iteration round, respectively. Also, the computing time
when building genomic relationship matrix was 48% longer
when using genomic information including the culled bull
calves. The peak virtual memory needed in the construction
of the G matrix and inverting it was 13.9 and 7.2 GB for
Ginc and Gexc, respectively. For the EBV estimation, there
was no difference in iteration time or computational load
with different pedigree information. The ssGBLUP in our
study was classical computational implementation with full
G�1

w stored and read from the disc file within each itera-
tion. In practice, the ssGBLUP would likely be imple-
mented using G�1

APYw
(e.g., Fragomeni et al., 2015) or

ssGTBLUP (M€antysaari et al., 2017), making the
ssGBLUP more similar to EBV estimation. However, the
comparisons of computational demands across different
ssGBLUP approaches are justified. It is clear that computa-
tional load of TD ssGBLUP can be notably reduced by dis-
carding the genotypes of the culled bull calves from the G
matrix.

According to the correlations between EBVs and
GEBVs, and their confidence limits (CL), it was apparent
that the inclusion or exclusion of the genotypes of the
culled bull calves did not affect the (G)EBVs of the refer-
ence bulls, common in all TD runs. GEBVs (and EBVs) of
the reference bulls were the same whether genomic or pedi-
gree information of the culled bulls was used in the TD
model or not (Table 3). For the EBVs, this was as
expected, but for the ssGBLUP, it demonstrated that for
reliably evaluated bulls, extra information from young
genotyped bulls does not change the GEBV estimation.
This is partly related to the issue that when a progeny and
its sire are both genotyped, the progeny genotype does not
provide any additional information to the sire and vice
versa (Ducrocq & Liu, 2009). Almost all the test bulls had
genotyped sire; 184 of 187 sires were genotyped, and on
average, they had 1,736 offspring of which on average 172
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were genotyped sons. However, nearly all of the reference
bulls were chosen for AI before the era of genomic selec-
tion, so the near-unity correlation for these bulls might not
imply unity correlation for genomically selected bulls after
they have progeny. The genetic trends or the SDs in the
reference bulls did not change even when genomic infor-
mation of culled bulls was used. Figure 1 shows the
genetic trends and Figure 2 the SD for protein (G)EBVs.
Only one EBV trend is presented in the figures because the
EBV trends by including or excluding the culled bulls were
exactly the same.

Our study indicated that including genomic information
of the culled bull calves without progeny has some effect
on the genomic evaluation of the test bulls to be progeny
tested. The correlation between GEBVinc and GEBVexc

was 0.97 for the test bulls group (Table 3), and in the most
cases, GEBVinc was higher than GEBVexc (Figure 3). In
general, the GEBVs of the test bulls had a tendency to
have higher GEBVs compared to their EBVs (or PAs in
the case of test bulls). The difference was even higher
when genomic information of the culled bull calves was
included in the ssGBLUP evaluation. This can be observed
also in the genetic trend for protein which was estimated
higher for the test bulls when the culled bulls had been
included in ssGBLUP evaluation (Figure 1). Similar trends
were observed also for milk and fat yields, although only a
protein yield trends are presented. When we checked the
GEBV trends and mean level for the culled bull calves (re-
sults not shown here), these were found to be clearly lower
than those of the test bulls. Thus, there is a tendency that
GEBVs of the test bulls get higher if genotypes of their
culled half-sibs are included in the ssGBLUP evaluation.
As expected, the SD of GEBVs for the test bulls within
birth years was higher than those of the PA due to the
extra information from the genotypes (Figure 2). However,
the inclusion of genomic information for the culled bull
calves did not have a clear effect on the SD of GEBVs,
although there was a tendency that SD is higher if culled
bulls are included in the ssGBLUP.

An important question is whether the (G)EBVs of the
bull sires and bull dams change when information of their
culled offspring is included in the model or not. As
expected, EBVs of parents to the test bulls did not change
when culled bulls were included in the pedigree because
the culled bull calves had no observations nor progeny.
Thus, the correlation between EBVs for these parents was
one. Correlation between GEBVinc and GEBVexc for the
test bull parents was 0.99. Therefore, it appeared that also
GEBVs of the bull sires and dams are more or less the
same whether or not genotypes of their culled sons are
used in the ssGBLUP evaluation.

The model validation results for the bulls are in Table 4
and for the cows in Table 5. Tables present regression
coefficients (b1) and validation reliabilities (R2) with 95%
bootstrap confidence intervals (CI). For the bulls, validation
reliabilities from the ssGBLUP were 0.43 and 0.44 for
milk, 0.34 and 0.34 for protein and 0.37 and 0.38 for fat,
when genotypes of the culled bull calves were included
(GEBVinc,R) and excluded (GEBVexc,R), respectively
(Table 4A). The PA based on the same data but without
genomic information gave on average 9.6% units lower
reliability for all traits. These numbers are lower than those
we have obtained in our earlier studies (Koivula et al.,
2015), where the R2 has been on average 0.49 for milk,
0.40 for protein and 0.44 for fat. The reason for decreased
validation reliabilities may be partly in the different geno-
mic matrix (e.g., use of base population allele frequencies
or accounting phantom parent groups in the G matrix), but
may also be related to the preselection of genotyped young
animals in the current study. For the cows, validation relia-
bilities with different genomic data were 0.34 and 0.38 for
milk, 0.28 and 0.31 for protein and 0.29 and 0.31 for fat,
when genotypes of the culled bulls were included (GEB-
Vinc,R) and excluded (GEBVexc,R) respectively. Cow PA
gave on average 5.6% units lower reliabilities than GEBVs.
However, for the cows, the validation reliabilities can differ
also because they have less close relatives in the reference
population. The inclusion of genotypes of the culled bull
calves did not have a large effect on validation reliability
of validation bulls or cows. However, there was a slight
tendency that R2 was lower when genomic data of the
culled bulls were included in the ssGBLUP evaluation. In
general, differences in the validation reliabilities were quite
small between the ssGBLUP evaluations that included or
excluded genotypes of the culled bulls. This is demon-
strated by 95% bootstrap confidence intervals (CI) that
indicate that main differences appear between PA and dif-
ferent GEBVs.

The degree of inflation is indicated by the coefficient of
regression (b1) of true genetic values on (G)EBV. Optimal
prediction of genetic merit of young individuals should
have a regression coefficient of one. With b1 less than one,

TABLE 3 Correlations (+95% confidence limits, CL) among
protein EBVs and GEBVs for the genotyped reference bulls (5,696)
and young selected AI bulls (test bulls; 1,140). (G)EBVinc stands for
analyses including and (G)EBVexc excluding genotype information
from the culled bull calves. For the test bulls, EBV equals parent
average (PA)

Reference bulls Test bulls

Correlation 95% CL Correlation 95% CL

EBVinc*
EBVexc

1.00 1.00–1.00 1.00 1.00–1.00

GEBVinc*

GEBVexc

0.99 0.99–0.99 0.97 0.96–0.97
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the predictions are inflated, and the differences in estimated
genetic merit of the test individuals are biased upwards
compared to their future performance. For the validation
bulls, the b1 coefficients were always lower than the
expected value, indicating that GEBV exaggerated differ-
ences between bulls (Table 4). Moreover, b1 coefficients
were even lower with the ssGBLUP evaluation that
included genomic information of the culled bulls. A similar
trend was observed also in the cow validation (Table 5).

The bull validations were also conducted with 2 years of
data reduction (like in cows). With this validation, we had
256 validation bulls, and the validation reliabilities from
the ssGBLUP were higher compared to the validation with
4 years of data (Table 4B). Thus, it was clear that more
genotyped cows in the reference population improved the
validation of bulls. Still, the difference between the two
ssGBLUP evaluations remained: the b1 values were a bit
higher with GEBVexc,R than with GEBVinc,R.
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FIGURE 1 Trends for protein (G)EBVs by birth year using different genomic and pedigree information for genotyped reference bulls (solid
lines) and young test bulls selected for AI (dashed lines). EBVs and GEBVs are expressed as standardized breeding values with SD of 10 units
for bulls born between the years 2005 and 2007. GEBVinc stands for analyses including and GEBVexc excluding genomic information of the
culled bull calves in ssGBLUP. For the test bulls, EBV stands for parent average (PA)
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TABLE 4 (A) Bull validation with 4 years of data reduction (Nbulls = 673) and (B) with 2 years of data reduction (Nbulls = 256) results from
different ssGBLUP. Regression coefficients (b1) and validation reliabilities (R2) and their 95% bootstrap confidence intervals (in parenthesis) from
the parent average (PA) by BLUP and GEBV by ssGBLUP with different genomic data. GEBVinc.R stands for analyses including and GEBVexc.R

excluding genotype information from the culled bull calves

Method

Milk Protein Fat

b1 R2 b1 R2 b1 R2

(A)

PA 0.95 (0.84–1.06) 0.36 (0.29–0.42) 0.80 (0.69–0.92) 0.26 (0.19–0.33) 0.68 (0.59–0.78) 0.24 (0.18–0.30)

GEBVinc,R 0.74 (0.67–0.81) 0.43 (0.37–0.50) 0.60 (0.53–0.68) 0.34 (0.27–0.41) 0.65 (0.58–0.72) 0.37 (0.31–0.43)

GEBVexc,R 0.76 (0.69–0.83) 0.44 (0.37–0.50) 0.63 (0.56–0.71) 0.34 (0.28–0.41) 0.67 (0.60–0.74) 0.38 (0.31–0.44)

(B)

PA 0.71 (0.55 – 0.87) 0.27 (0.15–0.37) 0.65 (0.48–0.84) 0.24 (0.11–0.35) 0.75 (0.57–0.91) 0.29 (0.18–0.39)

GEBVinc,R 0.72 (0.63–0.84) 0.44 (0.33–0.55) 0.64 (0.55–0.78) 0.39 (0.26–0.52) 0.73 (0.65–0.86) 0.46 (0.36–0.57)

GEBVexc,R 0.74 (0.64–0.84) 0.44 (0.33–0.55) 0.66 (0.55–0.78) 0.39 (0.26–0.52) 0.76 (0.65–0.86) 0.47 (0.36–0.57)

TABLE 5 Cow validation (Ncows = 8,572) results from different ssGBLUP. Regression coefficients (b1) and validation reliabilities (R2) and
their 95% bootstrap confidence intervals (in parenthesis) from the parent average (PA) by BLUP and GEBV by ssGBLUP with different genomic
data. GEBVinc.R stands for analyses including and GEBVexc.R excluding genomic information of the culled bull calves

Method

Milk Protein Fat

b1 R2 b1 R2 b1 R2

PA 0.96 (0.91–1.02) 0.30 (0.26–0.32) 0.89 (0.84–0.95) 0.26 (0.22–0.28) 0.84 (0.78–0.89) 0.23 (0.20–0.25)

GEBVinc,R 0.65 (0.61–0.69) 0.35 (0.34–0.41) 0.55 (0.52–0.58) 0.28 (0.24–0.31) 0.59 (0.55–0.62) 0.30 (0.26–0.32)

GEBVexc,R 0.75 (0.71–0.78) 0.38 (0.34–0.41) 0.64 (0.60–0.68) 0.30 (0.26–0.33) 0.67 (0.63–0.71) 0.32 (0.28–0.34)
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Validation results (both b1 and R2 values) indicated
that inclusion of genotypes of the culled bull calves may
increase bias in the ssGBLUP evaluation. This was more
evident in the cow validation. Therefore, it might be rea-
sonable to discard the genomic information of culled bull
calves. This could decrease overestimation of GEBVs of
test bulls and improve validation reliability of bulls and
cows. This will also reduce computational load of the
TD ssGBLUP evaluation. The inclusion of all genomic
data in ssGBLUP evaluation is a reasonable principle
because in theory, all information used in making
selection decisions should be accounted in the genetic
evaluation. Ducrocq and Liu (2009), and Patry and
Ducrocq (2011) underline the importance of all animals
in the genetic evaluation, and Shabalina et al. (2017)
reported that information from culled animals improved
accuracy of the ssGBLUP. One argument to taking all
information in the genomic evaluations is that in that
way we can take better into account genomic preselec-
tion. However, in genomic preselection, the bull calves
are culled based on their GEBV and therefore do not
provide any phenotypic information about selection.
Moreover, based on the current results, the culled bulls
in ssGBLUP might not need to be included in the sin-
gle-step evaluations.

In the ssGBLUP evaluations, it is important to make
the pedigree (A) and genomic (G) matrices compatible
(e.g., Meuwissen, Luan, & Woolliams, 2011). We ensured
compatibility using inbreeding coefficients in A�1, base
population allele frequencies in G and blending of a prop-
erly scaled G matrix with pedigree matrix A22. An
approach that can diminish bias in the evaluation is use
of weights on G�1 and A�1

22 , that is
H22 ¼ A22 þ sG�1 � xA�1

22 (Tsuruta, Misztal, Aguilar, &
Lawlor, 2011). We tested a case with s = 1 and x = 0.7
for our set-up in this study. Use of these parameters
decreased bias but still the evaluations would have failed
the Interbull requirement of having the variance inflation
coefficient b1 equal to one.

4 | CONCLUSIONS

Both the full and the reduced TD data models indicated
that inclusion of genomic information of culled bull calves
without progeny may increase bias in the ssGBLUP evalua-
tion. When full TD data were used, the GEBV trend of
young test bulls, which were bought for AI, was higher if
genotypes of the culled bull calves were included in the
ssGBLUP evaluation. In the validation test, there was a
tendency that validation R2 and b1 coefficient were better if
genotypes of the culled bulls were excluded from the
ssGBLUP evaluation.
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