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Abstract
Joint Nordic (Denmark, Finland, Sweden) genetic evaluation of female fertility is

currently based on the multiple trait multilactation animal model (BLUP). Here,

single step genomic model (ssGBLUP) was applied for the Nordic Red dairy cat-

tle fertility evaluation. The 11 traits comprised of nonreturn rate and days from

first to last insemination in heifers and first three parities, and days from calving

to first insemination in the first three parities. Traits had low heritabilities (0.015–
0.04), but moderately high genetic correlations between the parities (0.60–0.88).
Phenotypic data included 4,226,715 animals with records and pedigree 5,445,392

animals. Unknown parents were assigned into 332 phantom parent groups (PPG).

In mixed model equations animals were associated with PPG effects through the

pedigree or both the pedigree and genomic information. Genotype information of

46,914 SNPs was available for 33,969 animals in the pedigree. When PPG used

pedigree information only, BLUP converged after 2,420 iterations whereas the

ssGBLUP evaluation needed over ten thousand iterations. When the PPG effects

were solved accounting both the pedigree and the genomic information, the

ssGBLUP model converged after 2,406 iterations. Also, with the latter model

breeding values by ssGBLUP and BLUP became more consistent and genetic

trends followed each other well. Models were validated using forward prediction

of the young bulls. Reliabilities and variance inflation of predicted genomic

breeding values (values for parent averages in brackets) for the 11 traits ranged

0.22–0.31 (0.10–0.27) and 0.81–0.95 (0.83–1.06), respectively. The ssGBLUP

model gave always higher validation reliabilities than BLUP, but largest increases

were for the cow fertility traits.
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1 | INTRODUCTION

Genetics of fertility have been studied for decades, because
fertile animals are basis for cost‐effective production and
breeding of dairy cattle (e.g. Mäntysaari & Van Vleck,
1989; Philipsson, 1981; Sewalem, Kistemaker, & Miglior,
2010; VanRaden et al., 2004). Fertility traits have consider-
able genetic variation but low heritability. Attributed to

their unfavourable genetic correlation with milk yield, fer-
tility needs to be selected in breeding. In the Nordic coun-
tries, the Total Merit Index has included female fertility for
many decades (Mäntysaari & Van Vleck, 1989). The joint
Nordic routine genetic evaluation for fertility in Denmark,
Finland, and Sweden has been in use since 2005 (Fogh et
al., 2003) and was updated in 2015 (Muuttoranta et al.,
2015). In the new evaluations, heifer and cow fertility are
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modelled by multitrait multilactation animal models in
three separate trait groups. The first trait group has nonre-
turn rate, days from first to last insemination and days from
calving to first insemination, and the second trait group has
number of inseminations, heat strength, and interval from
calving to first insemination. A new third trait group has
conception rates (Tyrisevä et al., 2017).

Genotypes are a recent source of information in genetic
evaluations. In order to increase accuracy of estimated
breeding values, all phenotypic and genomic information
should be included into the genetic evaluation. Single step
genomic evaluation (ssGBLUP) is regarded as a simple
and accurate approach (Aguilar et al., 2010; Christensen &
Lund, 2010), which takes into account phenotypic, pedi-
gree, and genomic data simultaneously. Solving of
ssGBLUP is relatively easy by using the same procedures
as for evaluation without genomic information (hereinafter
traditional BLUP). However, calculation of the covariance
structure of breeding values in ssGBLUP requires a lot of
attention because it has pedigree and genomic relationship
matrices that need to be compatible. For example, there are
many alternative approaches to calculate allele frequencies
that are needed in forming the genomic relationship matrix
G Compatibility can be achieved by different kind of
adjustments to the G matrix such as shifting or scaling
(Chen, Misztal, Aguilar, Legarra, & Muir, 2011; Chris-
tensen, Madsen, Nielsen, Ostersen, & Su, 2012; Forni,
Aguilar, & Misztal, 2011; Vitezica, Aguilar, Misztal, &
Legarra, 2011) or weighting both the A and the G matrices
(Tsuruta, Misztal, Aguilar, & Lawlor, 2011). Incompatibil-
ity has been recognized to be associated also with the
genetic groups for the unknown parents (Misztal, Vitezica,
Legarra, Aguilar, & Swan, 2013). Furthermore, Strandén,
Matilainen, Aamand, and Mäntysaari (2017) observed that
convergence of the used iterative solving method can be
impaired if the inverse relationship matrices based on all
animals (A−1) and the genotyped animals (A22)

−1 in
ssGBLUP are made inconsistently. An alternative approach
is to adjust the A matrix to be compatible with the G
matrix. This approach accounts for nonzero inbreeding and
relationships among base animals using so called metafoun-
ders (Legarra, Christensen, Vitezica, Aguilar, & Misztal,
2015).

The ssGBLUP has been tested with promising results
for milk production traits (e.g. Koivula, Strandén, Pösö,
Aamand, & Mäntysaari, 2015; Lourenco et al., 2014).
However, only one ssGBLUP fertility evaluation has been
reported: Aguilar, Misztal, Tsuruta, Wiggans, and Lawlor
(2011) estimated breeding values for conception rate in
Holstein using multiple trait ssGBLUP. They found the
genomic enhanced breeding values (GEBV) by ssGBLUP
to be more accurate than corresponding breeding value esti-
mates (EBV) by traditional BLUP. In this study, we will

shortly describe the official Nordic evaluation model of
Nordic Red dairy cattle for the first fertility trait group:
nonreturn rate, days from first to last insemination and days
from calving to first insemination. The official BLUP
model is upgraded into a ssGBLUP evaluation. In the
ssGBLUP, the G matrix was formed using either the base
population or average genomic data allele frequencies. Fur-
thermore, phantom parent groups (PPG) were included into
the mixed model equations (MME) using QP‐transforma-
tion (Quaas & Pollak, 1981) where the PPG equations used
pedigree or both pedigree and genomic information. Feasi-
bility and validity of large‐scale ssGBLUP, as well as com-
parisons between GEBVs and EBVs are reported.

2 | MATERIALS AND METHODS

2.1 | Data

Data used in routine Nordic fertility evaluations for Nordic
Red dairy cattle were obtained from the Nordic Cattle
Genetic Evaluation (NAV, Aarhus, Denmark) in spring
2016. The Nordic fertility evaluations are calculated sepa-
rately for three trait groups, but only the first trait group
was analysed in this study. The multiple trait model had
traits for heifers and cows (Table 1). The heifer traits were
nonreturn rate within 56 days after first‐service (NRR0)
and days from first to last insemination (IFL0). The cow
traits (considered to be different in first, second, and third
parities) were nonreturn rate within 56 days after first‐ser-
vice (NRR1, NRR2, NRR3), days from first to last insemi-
nation (IFL1, IFL2, IFL3) and days from calving to first
insemination (ICF1, ICF2, ICF3). Phenotypic data had over
4.2 million cows with records collected since year 1982 in
Sweden, 1985 in Denmark, and 1992 in Finland until
2016. Total number of observations was approximately
29 million for the eleven traits. Pedigree consisted of over
5.4 million animals. There were 332 PPGs which
accounted genetic level by breed, country of origin, and
birth year. On average a group had almost 2,000 animals.
Few groups had less than 10 animals, but the largest
groups had about 40,000 animals. Genotype information
was available for 33,969 animals in the pedigree, from
which 6,072 were males. Bulls were genotyped using the
Illumina BovineSNP50 and cows with BovineLD Bead
Chips with the genotypes imputed to the 50K chip (Illu-
mina Inc., San Diego, CA, USA). After applying editing
criteria, of minor allele frequency of 0.01 and locus aver-
age GenCall score of 0.60, 46,914 markers were used in
the analysis.

Validity of ssGBLUP evaluation was studied by the for-
ward prediction approach (Mäntysaari, Liu, & VanRaden,
2010). To obtain enough information also for the third par-
ity traits in validation bulls, the observations from the last
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6 years in the full data were removed in the reduced data,
i.e., the reduced data had records until 2010. This reduced
the number of the heifer observations by 18%, and the first,
second, and third lactation observations by 19%, 20%, and
21% respectively. The reduced data contained over 3.4 mil-
lion cows with records and total of 23.4 million observa-
tions for the eleven traits. The same pedigree and genotype
information were used for both the full data and the
reduced data analyses.

2.2 | Model

The same multiple trait multilactation animal model and
(co)variance parameters (Muuttoranta et al., 2015; Tyrisevä
et al., 2016) were used for the GEBV and EBV calcula-
tions except that genomic information was included in the
GEBV calculations. Model contained one general regres-
sion effect for total heterosis, three fixed effects, and ran-
dom genetic animal effect for each trait. Fixed effects were
age at first breeding and, depending on the trait, herd ×
birth year or herd × first calving year − interaction and
month × insemination year or month × calving year − in-
teraction. In solving the mixed model equations, the PPG
solutions were regressed towards zero which is similar to
regarding the groups as random effects. Heritabilities were
0.015 for the heifer traits and NRR traits, 0.03 for IFL

traits of cows, and 0.04 for ICF traits (Table 1). Genetic
correlations between the parties were moderately high
(0.60–0.88).

The single step method (Aguilar et al., 2010; Chris-
tensen & Lund, 2010), was used. The method needs
inverse of the single‐step relationship matrix H which
accounts for both the pedigree and the genomic informa-
tion:

H�1 ¼ A�1 þ 0 0
0 G�1

w � A�1
22

� �

where A−1 and A�1
22 are inverses of pedigree based rela-

tionship matrices for all animals and for the genotyped
animals only, respectively, and Gw ¼ ð1� wÞGþ wA22.
The genomic relationship matrix G was based on method
1 in VanRaden (2008), where alternatively either the data
or the base population allele frequencies (McPeek, Wu,
& Ober, 2004) were used, and the w, representing the
weight for the polygenic relationships, was 10%. To
obtain values in the G and A22 matrices on the same
scale, values in G were multiplied by the scaling factor
trace(A22)/trace(G). Inbreeding coefficients were used in
forming the inverse of pedigree based relationship matrix
A−1 to be compatible with ðA22Þ�1 which included
inbreeding.

It is important that genomic and pedigree relationship
matrices are compatible (Chen et al., 2011; Christensen et
al., 2012; Forni et al., 2011; Tsuruta et al., 2011; Vitezica
et al., 2011), also when PPGs are used (Matilainen, Koi-
vula, Strandén, Aamand, & Mäntysaari, 2016). Commonly
the PPG equations are included into the pedigree based
relationship matrix A−1 via QP‐transformation (Quaas &
Pollak, 1981). Thus, the genetic group equations are aug-
mented into the inverse relationship matrix:

A�1
A ¼ A�1 �A�1Q

�Q0A�1 �Q0A�1Q

" #

¼
A11 A12 �ðA11Q1 þA12Q2Þ
A21 A22 �ðA21Q1 þA22Q2Þ

�ðQ0
1A

11 þQ0
2A

21Þ �ðQ0
1A

12

þQ0
2A

22Þ Q0A�1Q

2
6664

3
7775
;

where matrix Q describes the proportion of contributions
each animal receives from the genetic groups g, so that

E½a� ¼ Qg

where a is vector of all breeding values, Q2 and Q1 are
submatrices of Q that pertains to the genotyped and
nongenotyped animals, respectively, and Axx is a submatrix
of A−1 with x referring to genotyped (2) or nongenotyped
(1) animals. In most implementations of ssGBLUP, the
PPG equations are included into the pedigree based

TABLE 1 Eleven traits in the female fertility evaluations of
Nordic Red dairy cattle, their abbreviations (abb), number of
observations (N), and heritabilities (h2)

Parity
no. Trait abb N h2

Heifer Nonreturn rate NRR0 3,661,674 0.015

Interval from first to
last insemination

IFL0 3,500,021 0.015

1 Nonreturn rate NRR1 3,435,069 0.015

Interval from calving to
first insemination

ICF1 3,464,583 0.040

Interval from first to
last insemination

IFL1 3,459,107 0.030

2 Nonreturn rate NRR2 2,389,108 0.015

Interval from calving to
first insemination

ICF2 2,417,653 0.040

Interval from first to
last insemination

IFL2 2,415,235 0.030

3 Nonreturn rate NRR3 1,395,081 0.015

Interval from calving to
first insemination

ICF3 1,415,438 0.040

Interval from first to
last insemination

IFL3 1,414,073 0.030
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relationship matrix, as in A�1
A above, but not into the geno-

mic based relationship matrix Gw. Thus, by defining
B ¼ G�1

w � A�1
22 , the augmented inverse of the single‐step

relationship matrix H�1
A becomes:

H�1
A ¼ A�1

A þ
0 0 0
0 B 0
0 0 0

2
4

3
5:

This is incompatible, however, in a sense that genomic
information is not accounted for in the PPG effects. The
correct way would be to use (Misztal et al., 2013)

H�1
AB ¼ A�1

A þ
0 0 0
0 B �BQ2
0 �Q0

2B Q0
2BQ2

2
4

3
5

In our pedigree, the genotyped animals were associated
with 262 of 332 genetic groups.

2.3 | Computations

2.3.1 | Comparison of full data solutions

Three different GEBV solutions were calculated for models
with PPG: (a) ssGBLUPAd: using HA with G based on data
allele frequencies, (b) ssGBLUPAb: using HA with G based
on base population allele frequencies, and (c) ssGBLUPAB:
using HAB with G based on base population allele frequen-
cies. For comparison purposes, two additional genomic eval-
uations were made that did not include PPG: ssGBLUPd and
ssGBLUPb used H with G based on either data or base popu-
lation allele frequencies, respectively. Genetic trends were
addressed using sire GEBVs and EBVs only, but the correla-
tions between EBVs and GEBVs within birth years were cal-
culated both for males and for females.

2.3.2 | Validation

Validations of the different genetic evaluations were based
on regression as in Mäntysaari et al. (2010). Regression
model for the validation was

DRPf ¼ μþ δxr þ e;

where vector DRPf contained deregressed genetic predic-
tions (DRP) for bulls calculated by single‐trait model
from the EBVs based on the full data and xr contained
either GEBVs or EBVs from the reduced data. In the val-
idation regression, the DRP for trait i of sire j was
weighted by

r2DRPij ¼
ERCij

ERCij þ λi
;

where ERC is the effective record contribution based on
the full data and

λi ¼ 1� h2i
h2i

:

The validation regressions were fitted among 750 vali-
dation bulls which were selected to be young genotyped
sires with ERCij ¼ 0 in the reduced data but ERCij > 10 in
the full data for every trait i. Thus, for the bulls in the vali-
dation cohort, the EBVs estimated from the reduced data
were simple parent averages (PA).

Regression coefficient δ is expected to be one when the
evaluation based on reduced data predicts the future differ-
ences between animals properly. Furthermore, validation
reliability of the model was calculated as

R2
i ¼

~Ri
2

r2DRPi

where ~Ri
2 is R‐square value of the regression and r2DRPi

is
average of the weights for trait i. The higher the R‐square
value the better the model fits the data. Bootstrapping
based on 10,000 replicates was used to estimate 95% confi-
dence intervals for both the regression coefficients and the
validation reliabilities.

2.3.3 | Software

Numerator relationship matrix A22 was calculated using
RelaX2 (Strandén, 2014) and all GEBV and EBV analyses
were done by MiX99 (Vuori, Strandén, Lidauer, & Mänty-
saari, 2006). MiX99 uses iteration on data in precondi-
tioned conjugate gradient (PCG) algorithm to solve the
MME. For all analyses, PCG iteration was assumed to be
converged when the square root of relative difference
between consecutive solutions was smaller than 1.0−5.
DRP for the validation were calculated by MiX99 software
using the bisection method (Strandén & Mäntysaari, 2010).
These were calculated only for sires, using EBV and ERC
based on the full data. ApaX99 program was used to calcu-
late the Interbull ERCs (Strandén, Lidauer, Mäntysaari, &
Pösö, 2000). Bootstrapping was made using package boot
in R software (R Core Team, 2015). Ordinary nonparamet-
ric bootstrap resampling using boot‐function was applied to
generate replicates, after which the basic method of
boot.ci‐function calculated the confidence intervals.

3 | RESULTS

3.1 | Comparison of full data solutions

The traditional BLUP MME for solving EBVs converged
after 2,420 PCG iterations, whereas solving GEBVs from
the MMEs of ssGBLUPAd based on data allele frequencies
needed 23,284 PCG iterations. Logarithm of the
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convergence criteria had repetitive high peaks which may
be an indication of incorrect model or MME. Nevertheless,
genetic trends based on sire GEBVs and EBVs had the
same pattern. Figure 1 illustrates the averages of nonstan-
dardized sire EBVs and GEBVs for third parity traits by
birth year. Although the genetic trends were similar, the
individual EBV and GEBV estimates differed considerably.
This can be seen in correlations between the estimates by
trait and birth year. In general, IFL had correlations between
0.88 and 0.99, whereas NRR and ICF traits had correlations
0.65–0.96 and 0.55–0.99, respectively (Table 2).

Use of base population allele frequencies in the G matrix
used in ssGBLUP had positive impact on the PCG conver-
gence. The GEBV solutions for ssGBLUPAb were obtained
after 12,450 PCG iterations but the convergence criteria val-
ues did not decrease smoothly. The yearly sire means based
on ssGBLUPAb reached the means based on the traditional
BLUP for younger year classes, although trend for older
year classes was different (Figure 1). Again, correlations
between EBVs and GEBVs differed considerably by trait
and year (Table 2). Especially for NRR and ICF traits many
birth year classes had correlations lower than 0.90. Correla-
tions are shown by birth years for the third lactation traits in
Figure 2. The genetic group solutions differed between
genetic and genomic evaluations for some traits. For exam-
ple, for the third lactation, clear differences between the
Finnish Ayrshire genetic group solutions can be seen in
NRR3 but some smaller in ICF3 and hardly any for IFL3
(Figure 3). The same can be seen even more dramatically
for the reduced data set in the same figure.

Models without PPG converged faster than with PPG.
EBV solutions were obtained after 1,562 PCG iterations.
More dramatic reduction in the number of iterations was
seen in ssGBLUP evaluation: GEBVs were obtained after
1,296 and 1,553 PCG iterations using either data
(ssGBLUPd) or base population (ssGBLUPb) allele fre-
quencies, respectively. In addition, the convergence criteria
decreased smoothly in contrast with ssGBLUP with PPG.
Especially, the genetic trends based on GEBV solutions by
ssGBLUPb followed nicely the genetic trends based on
EBV solutions (trends for the cow traits in the third

FIGURE 1 Genetic trends based on estimated breeding values
from the animal model (BLUP) and genomic enhanced breeding
values (GEBV) from the single‐step genomic model (ssGBLUP) for
RDC Nordic bulls having at least 50 daughters. Models for GEBVs
used data (ssGBLUPAd) or base population (ssGBLUPAb and
ssGBLUPAB) allele frequencies. All models had phantom parent
groups (PPG) that used pedigree information, but model ssGBLUPAB
used also genomic information in PPG estimation. Traits are
nonreturn rate (NRR3), interval from calving to first insemination
(ICF3) and interval from first to last service (IFL3) in the third parity
[Colour figure can be viewed at wileyonlinelibrary.com]
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lactation in Figure 4). Furthermore, EBV and GEBV corre-
lations within birth year classes were between 0.83 and
1.00 (table or figure not shown, but follows ssGBLUPAB
results in Figure 2).

Removing of PPG is unrealistic in practical genetic
evaluations. It is important to take into account the correct
genetic base of each animal. When the PPG coefficients in
the MME of ssGBLUP included both the pedigree and the
genomic based relationship matrices, the PCG method con-
verged well. Solutions of GEBVs were obtained after
2,406 PCG iterations, which decreased wall clock comput-
ing time from about 11 days to 1.5 days. No peaks
occurred in the logarithm of the convergence statistic dur-
ing the iteration. Furthermore, there were no differences in
the PPG solutions between the non‐genomic and genomic
evaluations, neither with full or reduced data (Figure 3).
Genetic trends based on male GEBVs corresponded well
with the trends based on EBVs (Figure 1) and correlations
between EBVs and GEBVs by birth year were high
(Table 2 and Figure 2). The correlations for NRR traits
were somewhat lower than those for the other traits within

TABLE 2 Ranges of yearly correlations (among both the males
and the females) between EBVs and GEBVs by traits. Models for
GEBVs used data (ssGBLUPAd) or base population (ssGBLUPAb and
ssGBLUPAB) allele frequencies. All models had phantom parent
groups (PPG) that used pedigree information, but model ssGBLUPAB
used also genomic information in PPG estimation

Trait Parity GEBVAd GEBVAb GEBVAB

NRR 0 0.76–0.93 0.87–0.97 0.87–1.00

IFL 0 0.90–0.97 0.90–0.99 0.91–1.00

NRR 1 0.71–0.96 0.62–0.97 0.87–1.00

ICF 1 0.91–0.99 0.91–0.99 0.91–1.00

IFL 1 0.88–0.99 0.89–0.99 0.90–1.00

NRR 2 0.82–0.95 0.45–0.95 0.87–1.00

ICF 2 0.77–0.98 0.81–0.99 0.93–1.00

IFL 2 0.88–0.98 0.91–0.98 0.92–1.00

NRR 3 0.65–0.91 0.54–0.92 0.87–1.00

ICF 3 0.55–0.98 0.45–0.97 0.94–1.00

IFL 3 0.88–0.98 0.90–0.99 0.91–1.00

Note. ICF: interval from calving to first insemination; IFL: interval from first
to last insemination; NRR: nonreturn rate.

FIGURE 2 Yearly correlation between estimated breeding values
by BLUP and genomic enhanced breeding values by single step
(ssGBLUP) by sex (F for females and M for males) for third parity
traits nonreturn rate (NRR3), days from first to last insemination
(IFL3) and days from calving to first insemination (ICF3). Phantom
parent group estimation used pedigree information in ssGBLUPAb but
genomic information as well in ssGBLUPAB [Colour figure can be
viewed at wileyonlinelibrary.com]
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the same parity. For example, NRR1 had correlations
between 0.87 and 1.00 over all birth year classes both for
males and females, whereas IFL1 and ICF1 had correla-
tions ranging from 0.90 and 0.91 to 1.00. When the PPG
coefficients were correctly taken into account in the MME
(ssGBLUPAB), use of data allele frequencies gave similar
convergence and genetic trends as attained with base popu-
lation allele frequencies, and correlations between GEBVs
and EBVs by trait were almost one (results not shown).

Multiplication of B with the contribution matrix Q2 gen-
erated about 9 million new nonzero elements into H�1

AB in
comparison to H�1

A . This was only 1.5% of the original
unique elements in B. From the new nonzero coefficients,
99% of the values were between −0.1 and 0.1, but also
higher contributions existed especially on the diagonals for
the groups associated with the oldest year classes. Mean of
the diagonal elements in Q0

2BQ2 was 1.6 and the highest
coefficient was 88.6 for the PPG of Finnish RDC born in
1970. This is almost four times larger contribution than the
value of 22.7 subtracted from the group equations due to
Q0

2A
�1
22 Q2. On average the diagonals and off‐diagonals in

Q0
2BQ2 were three and five times bigger, respectively, than

in Q0
2A

�1
22 Q2. The correlation of diagonals in Q0

2G
�1Q2

and Q0
2A

�1
22 Q2 was 0.99 versus 0.97 for base population

and data allele frequencies, respectively.
Descriptive statistics of diagonals and off‐diagonals in

G and A22 (in Table 3) do not change whether PPGs are
included or not in the MME. However, correlations
between groups of matrix elements of G and A22 were
higher when G used base population than data allele fre-
quencies (0.49 versus 0.04 for diagonal values and 0.88

versus 0.80 for off‐diagonal values). In the nonscaled G
matrix using base allele frequencies (data allele frequencies
in parenthesis), averages of diagonal and off‐diagonal val-
ues were 16,271.56 and 739.11 (15,532.00 and −0.46),
respectively. After scaling of G, the average of diagonal
values was 1.02 and the average of off‐diagonal values was
near zero both in G and A22. The range of values in A22

was from zero to 1.29, but the range of values in G was
from −0.10 to 1.28 with base allele frequencies and from
−0.14 to 1.43 with data allele frequencies.

3.2 | Validation

Validation used DRPs calculated from the EBVs based on
the full data. Mean reliabilities of DRPs as a predictor of
breeding value for validation bulls by trait are in Table 4.
The average reliability decreased as parity increased. Mean
reliability for NRR0 was almost as high as reliability for
NRR1. However, IFL0 had lower reliability than IFL1‐3.
This can be explained with lower heritability for IFL0 com-
pared to IFL1‐3.

Validation reliabilities and regression coefficients were
calculated for PAs from BLUP and for GEBVs from
ssGBLUPAB which included QP‐transformation for full
MME (Table 4). The validation reliabilities for PAs were
low or moderate (0.10–0.27). In the case of heifer traits, vali-
dation reliabilities for GEBVs were only somewhat higher
than for PAs. NRR0 and IFL0 had validation reliabilities
0.19 and 0.27 for PAs, respectively, but 0.23 and 0.29 for
GEBVs. Furthermore, the validation reliabilities for both
PAs and GEBVs had almost as wide 95% confidence

FIGURE 3 Estimated genetic group
effects of group describing Finnish Ayrshire
for the third parity traits nonreturn rate
(NRR3), days from first to last
insemination (IFL3) and days from calving
to first insemination (ICF3) from the animal
model (BLUP) and two genomic
(ssGBLUPAb and ssGBLUPAB) evaluations
based on both the full (F) and the reduced
(R) data. Group equations were based on
pedigree information in ssGBLUPAb but
genomic information as well in
ssGBLUPAB [Colour figure can be viewed
at wileyonlinelibrary.com]
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intervals for these traits. In contrast, advantage of the
ssGBLUP model was clear for all cow traits. Validation reli-
abilities increased on average from 0.13 to 0.24 for NRR
cow traits, on average from 0.18 to 0.29 for ICF cow traits,
and on average from 0.18 to 0.30 for IFL cow traits. The
lower limit of the 95% confidence interval for the GEBV val-
idation reliabilities were closer to the corresponding higher
limit than the lower limit for PA validation reliabilities.

Regression coefficients for the EBVs varied more than
the regression coefficients for the GEBVs (Table 4). Lar-
gest differences were in the regression coefficients of the
heifer traits, which were clearly higher for the EBVs than
for the GEBVs (on average 1.03 versus 0.84). In fact, the
regression coefficients for the GEBVs were close to the
lower limit of 95% confidence interval for the EBV solu-
tions. For the cow traits, regression coefficients were more
similar for the two models. Regression coefficients were on
average 0.91 for the EBV solutions and on average 0.90
for the GEBV solutions.

4 | DISCUSSION

Simplifications in MME are common in dairy cattle evalua-
tions for computational reasons. For example, traditional
BLUP evaluations often neglect inbreeding in A−1. A
major challenge is making computationally feasible

TABLE 3 Mean, standard deviation (SD), minimum (Min) and
maximum (Max) for diagonal and off‐diagonal values of three
different relationship matrices: Pedigree based relationship matrix
related to genotyped animals (A22), and genomic based relationship
matrices both with base and data allele frequencies (Gb and Gd,
respectively)

Mean SD Min Max

Diagonal(A22) 1.02 0.01 1.00 1.29

Diagonal(Gb) 1.02 0.03 0.74 1.27

Diagonal(Gd) 1.02 0.05 0.81 1.43

Off‐diagonal(A22) 0.05 0.04 0.00 0.81

Off‐diagonal(Gb) 0.05 0.05 −0.10 1.01

Off‐diagonal(Gd) 0.00 0.05 −0.14 1.00

FIGURE 4 Genetic trend based on estimated breeding values
from the animal model (BLUP) and genomic enhanced breeding
values (GEBV) from the single‐step genomic model (ssGBLUP) for
RDC Nordic bulls having at least 50 daughters. Base population
allele frequencies (ssGBLUPb) or data allele frequencies (ssGBLUPd)
were used. None of the models had phantom parent groups. Traits are
nonreturn rate (NRR3), interval from calving to first insemination
(ICF3) and interval from first to last service (IFL3) in the third parity
[Colour figure can be viewed at wileyonlinelibrary.com]
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ssGBLUP evaluations where contributions in MME due to
genomic information are compatible with those from pedi-
gree information. Without PPG in the model, compatibility
was obtained easily resulting in similar genetic trends and
high yearly correlations between EBV and GEBV. With
PPG in the model, incompatible matrices that did not
account properly coefficients pertaining to PPG in the
MME caused the poor PCG method convergence of the
ssGBLUP evaluations. The poor convergences lead to
GEBVs that were very different from EBVs, although by
chance the genetic trends may be similar.

Although the problem was mainly due to accounting
only pedigree information in the coefficients of the genetic
groups, also inclusion of the inbreeding coefficients in the
pedigree based relationship matrix A improved the evalua-
tions (Matilainen et al., 2016). Inclusion of genomic infor-
mation on PPG equations guarantees correct expectation of
breeding values for the genotyped animals, and not only
the genotypic information, but also the pedigree based
information have to be taken correctly into account. In
other words, if A�1

A includes the genetic groups, but A�1
22 is

constructed assuming only one base population, the breed-
ing value expectations of genotyped animals become incor-
rect.

When the coefficients for the PPG in the MME were
properly accounted and inbreeding coefficients were
included consistently in the inverses of the pedigree based
relationship matrices, the convergence statistics decreased
smoothly. Above all, EBV and GEBV solutions were con-
cordant after the PPG equations of the MME accounted
both the pedigree and the genomic relationship matrix
information. Genetic trends followed well each other and

yearly correlations were high for the old year classes. Cor-
relations decreased within the younger year classes, but this
is expected due to the significant additional genomic infor-
mation for the young animals. Use of either data or base
population allele frequencies had little effect on conver-
gence and the genetic trends when pedigree and genomic
based relationships were compatible, either with or without
PPG.

The inclusion of contributions into PPG equations due
to genomic information was found to be relatively easy.
The group proportions for the genotyped animals in the
contribution matrix Q2 were attained using readily available
pedigree analysis software RelaX2 (Strandén, 2014). There-
after, the only requirement was multiplication of B with
the contribution matrix Q2. The values from this multipli-
cation were included in the same file that provides the
B‐matrix for the MME of the genomic evaluation. Thus,
no changes were needed in the MME solver software.
Another way to correct inconsistency of the two relation-
ship matrices could be the use of the metafounder approach
(Legarra et al., 2015). This would, however, require a large
number of group relationship parameters to be estimated
for the 332 genetic groups.

Using only pedigree based information in PPG coeffi-
cients of MME had no remarkable influence in the
ssGBLUP evaluations of dairy production traits (Koivula et
al., 2015), but we observed poor convergence in the fertil-
ity trait evaluations. The effect may have been especially
strong because some PPG were only two generations away
from the genotyped animals in our data. Low heritabilities
for the fertility traits may also have increased size of the
effect which is due to inconsistent inclusion of the pedigree

TABLE 4 Mean reliability of DRPs for validation bulls (r2DRP), and validation reliability (R2) and regression coefficient (δ) of deregressed
proofs on the parent averages (PA) and on the genomic enhanced breeding values (GEBVAB). 95% bootstrap confidence intervals are in the
parentheses

Trait Parity r2DRP

PA GEBVAB

R2 δ R2 δ

NRR 0 0.42 0.19 (0.09–0.28) 1.00 (0.75–1.26) 0.23 (0.14–0.32) 0.81 (0.63–0.98)

IFL 0 0.41 0.27 (0.16–0.37) 1.06 (0.83–1.28) 0.29 (0.19–0.39) 0.87 (0.70–1.04)

NRR 1 0.48 0.16 (0.09–0.23) 0.96 (0.74–1.18) 0.27 (0.17–0.36) 0.86 (0.70–1.02)

ICF 1 0.62 0.16 (0.09–0.22) 0.99 (0.77–1.20) 0.28 (0.20–0.36) 0.90 (0.76–1.04)

IFL 1 0.58 0.17 (0.10–0.24) 0.92 (0.73–1.10) 0.31 (0.22–0.39) 0.89 (0.77–1.02)

NRR 2 0.41 0.12 (0.05–0.18) 0.98 (0.71–1.25) 0.24 (0.14–0.34) 0.95 (0.74–1.14)

ICF 2 0.61 0.17 (0.10–0.24) 0.88 (0.69–1.07) 0.29 (0.20–0.37) 0.86 (0.72–0.99)

IFL 2 0.55 0.16 (0.09–0.22) 0.85 (0.67–1.03) 0.29 (0.21–0.38) 0.89 (0.75–1.02)

NRR 3 0.35 0.10 (0.03–0.17) 0.83 (0.53–1.12) 0.22 (0.11–0.32) 0.92 (0.69–1.13)

ICF 3 0.56 0.20 (0.12–0.27) 0.92 (0.73–1.11) 0.31 (0.22–0.39) 0.90 (0.77–1.04)

IFL 3 0.50 0.20 (0.12–0.27) 0.88 (0.71–1.05) 0.31 (0.22–0.41) 0.91 (0.77–1.04)

Note. ICF: interval from calving to first insemination; IFL: interval from first to last insemination; NRR: nonreturn rate.
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and genomic relationship matrices. It is unclear if PPG
should include contributions due to genomic relationships
also in the evaluations when there are no convergence
problems. Large coefficient values resulting in multiplica-
tion of B with contribution matrix Q2 could be a useful
indicator on the need to include genomic information in
the genetic group coefficients. Inadequate inclusion of the
contributions gave PPG effect estimates that differed
between the genomic evaluations of the full and the
reduced data across the year classes. Hence, differences in
the PPG solutions from full and reduced data analyses may
be the first indicator for an unstable MME system and
incorrectly accounted contributions into PPG. Also differ-
ences in the PPG solutions from the traditional genetic and
the genomic evaluations within both the full and the
reduced data may indicate the incorrectly accounted contri-
butions. Exact limits for the differences are difficult to say,
however, because these are likely to depend on data and
population.

The validation reliabilities for PA of NRR traits in this
study were higher than those for the conception rate traits
(on average 0.06) reported in Aguilar et al. (2011). Main
reason for this may be that in our study there were addi-
tional correlated traits in the multiple trait model. However,
PA validation reliabilities for the fertility traits (on average
0.17) were lower compared to the milk production traits
(on average 0.30) in Koivula et al. (2015). In absence of
selection, the validation reliability is an estimate of the pre-
diction reliability. With low heritability traits, the candidate
PA reliability is roughly 5/16 of a reliability of progeny
tested sires. This seems generally as a right assumption
which can be verified using the average reliabilities of
DRPs for validation bulls in Table 4.

For most of the traits the validation reliabilities for
GEBVs were substantially higher than those for PAs. Also,
the confidence intervals for the GEBV reliabilities were
slightly larger than those for the PA reliabilities, although
the increase in the confidence intervals was less than the
increase in the reliabilities. The length of confidence inter-
vals for the validation reliabilities were between 70 and
140 percent of the estimates for PA reliabilities, and
between 55 and 95 percent of the validation reliabilities for
GEBVs. For example, length of confidence interval of the
validation reliability for NRR3 increased from 0.14 to 0.21,
but the relative length decreased from 140 to 95 percent.

The improvement due to the genomic information in the
validation reliability for the cow traits corresponded to
approximately 51 additional ERCs. The biggest relative
improvement due to genomic information was for the NRR
cow traits, for which on average 101 additional ERCs
would have been needed to attain similar increase in the
validation reliability. The corresponding addition for the

other cow traits would have been on average 27 ERCs.
Improvement due to genomic information was less clear
for the heifer traits. The estimates of R2 for NRR0 and
IFL0 GEBVs were within confidence interval of the R2 for
corresponding PA. Especially for IFL0, R2 for GEBVs
remained low while for the cow traits R2 for GEBVs was
almost double the R2 for PA. Furthermore, R2 for PAs were
higher for the heifer traits compared to corresponding cow
traits, whereas R2 for GEBVs were lower for the heifer
traits compared to corresponding cow traits. Overall, vali-
dation reliabilities were nearly equal across parities for both
EBVs and GEBVs, although the model validation reliabil-
ity has usually decreased as parity has increased (e.g. Agui-
lar et al., 2011; Lourenco et al., 2014).

Regression coefficient δ close to one indicates that the
evaluation based on the reduced data predicts the future
differences between animals properly. Based on this,
GEBV estimates were more inflated than EBVs. This has
been observed also for milk and protein yields in Koivula
et al. (2015) for bull validation results when using the same
polygenic proportion (10%) in the genomic relationship
matrix as in our study. However, in all the validation tests,
δ for the GEBVs was within the confidence interval of δ
for the PAs. Moreover, confidence interval of δ for the
GEBVs included 1.0 with every trait except NRR0 (upper
limit 0.98) and ICF2 (upper limit 0.99), and, thus, these
GEBVs can be considered unbiased according to δ. For the
final score and type traits in US Holstein, Tsuruta et al.
(2011) reported increase in the regression coefficients when
using different weights for the genomic and pedigree rela-
tionship matrices. Choice of optimal weights increased
regression coefficients also for milk production traits for
Nordic Red dairy cattle in Koivula et al. (2015). However,
we see only little gain to be achieved through such
weights, as in nine traits of 11 the GEBVs were not statis-
tically biased.

In this study, ssGBLUP for Red dairy cattle fertility traits
in the joint Nordic evaluations was explored. Modelling was
based on the multiple trait multilactation animal model and
variance components used in the routine Nordic fertility
evaluation. Large‐scale ssGBLUP evaluation was found to
be feasible when the coefficients of the genetic groups in the
MME accounted both the pedigree and genomic information
correctly. In this case faster convergence by the iterative sol-
ver and more reliable GEBVs were obtained based on the
comparisons with the EBVs. Model validation showed that,
especially for the cow traits, ssGBLUP improved the fertility
evaluations compared to the traditional BLUP without geno-
mic information. Based on the genetic trends, correlations
between EBV and GEBV estimates, and validation results,
genomic information improved the breeding value prediction
in the youngest birth year classes.
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