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Summary 

 

Accurate estimation of variance components (VCs) is needed for genomic prediction, but until now 

VCs are usually estimated by restricted maximum likelihood (REML) in pedigree-based animal 

model (P-AM). In this study, REML in P-AM and Markov chain Monte Carlo (MCMC) procedure 

via Gibbs sampling in single-step Bayesian regression model (SSBR) were used to investigate the 

consequences of VCs estimation based on different subsets of phenotypic information. Three 

scenarios were analyzed: (1) phenotypes only from conventional (P-AM) part of the breeding 

scheme; (2) phenotypes from both conventional and genomic selection (GS) parts of the breeding 

scheme; (3) phenotypes only from the GS part of the breeding scheme. Unbiased estimation of VCs 

was obtained before GS era via P-AM. Including records from GS era led to biased estimation of 

VCs for P-AM. SSBR allowed utilizing data from all periods and combine information from both 

genotyped and non-genotyped individuals, and unbiased estimated genetic variance was achieved. 

With the advantage of sampling remaining genetic and marker variances separately, SSBR have the 

potential option to achieve unbiased VCs estimation in populations under GS.  
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Introduction 

 

Prediction of breeding values needs accurate estimates of variance components (VCs). Although 

there are several genomic prediction models to choose from, VCs used in these models usually rely 

on analysis where additive genetic effects are modeled using pedigree relationships. Before 

genomic information was available Van der Werf & Deboer (1990) showed that unbiased 

estimation of VCs can be achieved when all data that lead to selection and complete relationships 

were used in animal model, and ignoring data from selected ancestors led to biased estimation due 

to not accounting for gametic disequilibrium. However these results were obtained under the 

infinitesimal model and with the implementation of genomic selection (GS), firstly, gene 

frequencies may change faster compared to phenotypic selection. More importantly, GS introduced 

extra pre-selection components, hence if the populations are under GS, the estimations of VCs from 

pedigree-based animal model (P-AM) are expected to be biased due to not accounting the impact of 

GS. Secondly, phenotypes recorded under GS should also be utilized to investigate VCs instead of 

eliminating them. Furthermore, new traits might be continuously included in the breeding programs. 

Along with the above reasons, a genomic model needs to be considered for VCs estimation in 

populations under GS. 

 Lately, a single-step Bayesian regression model (SSBR) was proposed by (Fernando et al., 

2014, Fernando et al., 2016), which require to explicitly impute the markers for non-genotyped 

individuals and then fit the marker effects in the model. Compared to single-step genomic BLUP 
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(SSGBLUP) (Legarra et al., 2009, Christensen & Lund, 2010), SSBR avoids brute-force matrix 

inversion, in addition, it provides a feature to estimate marker variance and remaining genetic 

variance separately. The objective of this study was to explore the VCs estimation based on 

simulated data using different strategies for choosing the data to be included in the analysis. 

 

Material and methods  
 

A Danish Jersey population was mimicked in terms of practical breeding scheme and population 

structure. The simulated VCs for genetic and residual effects were 3.65 and 5.05, respectively. VCs 

estimation was conducted using restricted maximum likelihood (REML) and Markov chain Monte 

Carlo (MCMC) procedure via Gibbs sampling. Five replicates for each scenario were used in this 

study. 

 

Simulation design 

 

A Danish Jersey population distributed in 100 herds was simulated using a stochastic finite locus 

model in consecutive 3 stages: (1) Historic population, covering 3,000 non-overlapping generations 

in order to create an initial linkage disequilibrium (LD) structure. A total of 3  108 SNP markers 

were evenly spaced with a mutation rate of 1.8  10-6 to establish mutation-drift equilibrium, and 

every 32nd SNP was considered to be a potential QTL. 2,000 segregating QTLs and 40,000 

segregating markers were retained in the base population. (2) A conventional breeding phase was 

simulated for 20 years to reflect the current size of Danish Jersey population. Each year, 50 bulls 

were selected based on their parent average (PA) and 5 proven bulls were selected from these 50 

bulls for further insemination. All these 50 bulls were genotyped and 10,000 cows in different age 

groups were maintained each year. Only cows in first lactation, however, were assumed to have 

phenotypes. In stage (3) a genomic selection based on SSGBLUP was simulated for 15 years. Each 

year, 500 bulls and 2,000 heifers were genotyped based on selection of their GEBVs. The 

simulation was performed in ADAM software (Pedersen et al., 2009). 

 

Statistical models 

 

P-AM 

 

The classic animal model (Henderson, 1984) using pedigree-based relationship was: 

 
  y Xβ Za e                                                                                                                                   (1) 

 

where y is the vector of phenotypes,  is a vector of fixed effects, i.e. herd-year-season effect, a is a 

vector of additive genetic effects , where A is the numerator relationship matrix and 

 is the additive genetic variance. X and Z are design matrices, and e is a vector of residuals 

), where  is the residual variance. VCs were estimated by REML (Patterson & 

Thompson, 1971) with the average information algorithm (AI-REML) (Jensen et al., 1997) 

implemented in DMUAI (Madsen & Jensen, 2013).  

 

SSBR 

 

The SSBR model based on Bayes C with assumption of all markers have non-zero effects 

(Fernando et al., 2014) is as follows: 
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where subscript n is denoted for non-genotyped individuals and subscript g is denoted for 

genotyped individuals. Thus, y represent vectors of phenotypes,  is a vector of fixed effects, i.e. 

herd-year-season effect, X and Z are design matrices, e is a vector of residuals, g is a vector of 

GEBVs can be written as follows: 
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                                                                                                                                                                                             (3) 

 

where Mg is a matrix contains observed marker covariates for genotyped individuals, Mn is a matrix 

contains imputed marker covariates for non-genotyped individuals via linear relationship with Mg, 

 is the vector of random marker effects,  is the vector of imputation residuals.  

Gibbs sampler was used to obtain MCMC samples of the unknown parameters from their 

marginal distributions. The length of MCMC chain was set to 50,000 with a burn-in of 20,000 

iterations. Convergence diagnostics for MCMC were assessed in R package boa (Smith, 2007) and 

all parameters investigated were converged. 

 

Scenarios 

 

Three scenarios based on choosing different subsets of available phenotypes for estimation of VCs 

were investigated. An overview of the subsets used and the average number of pedigree, phenotypes 

and genotypes for each scenario over 5 replicates are shown in Table 1. 

 

Table 1. Scenarios based on which subsets of phenotypes used for VCs estimation and average 

statistics of simulated datasets over 5 replicates. 

 

Scenario 
Conventional 

phase 

GS    

phase 

no. in  

pedigree 

  no. of  

  phenotypes 

 no. of      

genotypes1 

1 ✓  84,164 81,240 1,050 

2 ✓  ✓ 160,131 144,728 38,550 

3   ✓ 106,011 63,487 38,550 
 1 Genotypes were only used in SSBR. 

 

Results and Discussion 

 

Table 2 presents the mean and standard error (SE) of estimated VCs for each data subset over 5 

replicates. As expected, genetic variance and residual variance were precisely estimated in P-AM 

scenario 1 (P-AM 1). This result is well known in the infinitesimal model that selection can be 

accounted for in the mixed model via the numerator relationship matrix (Sorensen & Kennedy, 

1984). In P-AM 2 and P-AM 3, genetic variances were underestimated and residual variances were 

overestimated compared to the true simulated VCs. This could be mainly due to the pre-selection on 

genomic information, since this information was ignored in the classical animal model.  
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Compared to P-AM, by employing the full phenotypes and genomic information, SSBR 2 

yielded unbiased estimates of genetic variance, but the residual variance was overestimated. In 

SSBR 1, genetic variance was overestimated although estimated residual variance was close. In 

SSBR 3, genetic variance was underestimated while residual variance was overestimated. With the 

intensive use of GS, our results confirmed the shift of genetic variance due to pre-selection for 

young bulls based on GEBVs. In general, all models that included only the phenotypes from GS 

part of the breeding scheme resulted in underestimated genetic variances and overestimated residual 

variances (P-AM 3 and SSBR 3).  

In SSBR, the genetic variance is essentially variance of genetic effects of non-genotyped 

individuals conditional on the genetic effects of genotyped individuals (Legarra et al., 2009). With 

the assumption of multivariate normality Markers of non-genotyped individuals were imputed via a 

pedigree-based linear system, in which imputation quality is largely depending on the genetic 

relationships between genotype and non-genotyped individuals, i.e. old ancestors would expect to 

obtain worse imputation quality than the younger ones. However, the imputation was under the 

assumption of multivariate normality which is an approximation. Therefore, better methods for 

imputing genotypes of non-genotyped individuals conditional on the genotyped ones would be 

expected to yield more accurate results Alternatively, in a specific case where sires of all 

phenotyped daughters are genotyped, a SSBR sire model instead of the animal model could be an 

option to avoid the imputation process and be able to estimate the sire genetic variance based on all 

genomic information. 

 

Table 2. Mean and standard error (SE) of estimated variance components for each scenario over 5 

replicates. 

   

Method    Scenario          𝜎𝑎
2

             𝜎𝑒
2 

True VCs  3.65 5.05 

P-AM         1 3.62 (0.05) 5.02 (0.01) 

 2 3.52 (0.03) 5.07 (0.01) 

 3 3.19 (0.09) 5.20 (0.04) 

SSBR         1 4.19 (0.04) 5.10 (0.02) 

 2 3.57 (0.04) 5.24 (0.01) 

 3 3.03 (0.04) 5.27 (0.03) 
 

Conclusion 

 

The objective of this study was to investigate VCs estimation in a simulated Danish Jersey 

population where GS has been conducted for several generations. P-AM and SSBR were used to 

estimate VCs based on different subsets of phenotypic information. SSBR shows the potential 

capability to yield unbiased VCs estimation in GS era whereas P-AM ignoring genomic information 

yields biased results. 
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