
Proceedings of the World Congress on Genetics Applied to Livestock Production, 11.474

Genomic prediction for dry matter intake in Nordic Holsteins
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Summary

Genetic improvement of feed efficiency (FE) is an important issue since feed is the major cost in
dairy farms. However, individual feed intake is difficult or costly to measure, which limits selection
accuracy. Genomic selection is expected to be a promising tool to start selection for FE. The
objective of this study is to investigate accuracy of genomic prediction for dry matter intake (DMI)
in the case of a small reference data in Nordic Holsteins. Two data sets were used in this study. The
first data set included 53,914 week-records of DMI records from 1,623 lactations of 827 cows.
Among these cows, 330 individuals were genotyped with 54k chip. The other data set included
5,409 progeny-tested bulls with marker data of 54k chip and de-regressed proof of milk yield.
Breeding value were predicted using a univariate and a bivariate (with milk yield as assistant trait)
conventional BLUP model, as well as a univariate single-step model (ssGBLUP) and a bivariate
ssGBLUP model.

Using single-trait analysis, correlation between EBV and corrected 305d DMI for genotyped
animals increased from 0.287 to 0.393 in validation scenario without sibs in training data, and from
0.366 to 0.432 in scenario allowing sibs in training data, when moving conventional BLUP model
to ssGBLUP model. The ssGBLUP also led to a slight improvement of EBV accuracy for non-
genotyped animals. The bivariate models using milk yield information resulted in a considerable
increase of model-based reliability for both genotyped and non-genotyped animals, but an increase
of correlation between EBV and corrected 305d DMI only for genotyped animals. Although we
used a small reference population, the results indicated that genomic prediction leads to better
prediction accuracy than conventional BLUP method. To obtain a higher accuracy of EBV for
DMI, more data are required.
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Introduction

Feed is the greatest cost for dairy farmers, limiting the profitability of dairy production. Thus,
improving feed efficiency (FE) through genetic selection is an important opportunity for the dairy
industry. In Holsteins, heritability estimates of feed intake range from 0.12 to 0.53 (de Haas et al.,
2015; Li et al., 2016) and therefore is likely to be changed via genetic improvement.
Recording FE is, however, complicated because these traits are difficult and costly to measure. This
situation may result in a limited amount of information and, consequently, a low accuracy of
estimated breeding values. Although the number of records for feed intake is low, the utilization of
genomic selection is suggested as a promising tool to start selection for FE (Calus et al., 2013).
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Previous studies have reported that genomic selection for feed intake is possible with an
accuracy of around 0.4 (de Haas et al., 2012, 2015). It is important to highlight that most studies
have validated the genomic breeding values (GEBV) in cows and growing heifers, and the
reference animals are contemporaries of the validation animals. Therefore, attention has to be taken
when using these results into accuracy of bull selection. A validation strategy more consistent with
real life scenario is required for validation of prediction accuracy for feed intake.

The objective of this study is to investigate accuracy of genomic prediction for DMI in a
small reference data in Nordic Holsteins, using single-step GBLUP model (Christensen and Lund,
2010).

Materials and Methods

Data

Two data sets were used in this study. The first data set included 53,914 week-records of DMI
records from 1,623 lactations of 827 cows, covering calving year from 1991 to 2014 and birth year
of cows from 1988 to 2013. Among these cows, 330 individuals were genotyped with 54k chip.
The other data set included 5,409 progeny-tested bulls with marker data of 54k chip. De-regressed
proof of milk yield in this data set were used as assistant trait to predict breeding value of DMI
using a bivariate model. The raw data of DMI were edited by deleting the records out of the period
from lactation week 1 to 44, the lactations with less than five week-records, and the lactations over
the third parity. See details of raw DMI data in Li et al (2016).

Statistical models

To account for non-genetic effect accurately and to perform a validation procedure, corrected 305 d
DMI (DMI305) were derived from week-records using the following model,

DMIw = Herd_Year_Season + FeedingTrial + Parity_ AgeGroup + b1fwk + b2(fwk)2 + b3lwk
+ b4(lwk)2 + PE + bPE1L1 + bPE2L2 + A + ba1L1 + ba2L2 + residual,

In the model, fwk = wk of days in milking/44, lwk=log(44/wk of days in milking), L1 and L2 were
the first and second orders of Legendre polynomials. b1-b4 were fixed regression coefficients to
describe lactation curve of DMI. PE, bPE1 and bPE2 were intercept and regression coefficients for
random permanent effect. A , ba1, and ba2 are intercept and regression coefficients for random
additive genetic effect. To account for heterogeneous residual variances, different weights
according to residual variances estimated from analysis on each 4 weeks were applied to residual
variances in different lactation periods. The corrected DMI305 was calculated as the accumulation
of additive genetic and permanent environment as well as residual effects over 305 d according to
the parameters estimated from the above model.

Breeding values of DMI305 were predicted using a univariate and a bivariate (with milk yield
as extra source of data information) conventional BLUP model, as well as a univariate ssGBLUP
model and a bivariate ssGBLUP model. The basic model is

DMI305 = µ+additive genetic + residual

In the model, the number of week-records was used as weight to account for heterogeneous residual
variance of DMI305.



When using ssGBLUP model, a weight of 0.20 was put on pedigree-based relationship matrix
for building the joint marker-pedigree relationship matrix, and the genomic relationship matrix was
adjusted to be in similar scale as pedigree relationship matrix as proposed by Christensen et al
(2012). Estimation of variance components and prediction of breeding values were carried out
using DMU package (Madsen and Jensen, 2013).

Validation

Accuracy of EBV for DMI305 using different models was assessed by a 5-fold cross-validation
procedure. Two scenarios of validation were performed. In the first cross-validation scenario, the
half-sib families in the whole DIM305 data were randomly divided into five subsets (family
validation, VFAM). In the other scenario, the individuals in the whole DIM305 data were randomly
divided into five subsets (random individual validation, VRAN). In each fold validation, one subset
was used as test data and the other subsets as training data. The two scenarios differed in
relationship between test and training animals. In VFAM, the test animals did not have sibs in the
corresponding training data, thus a relatively distant relationship between test and training animals.
Conversely, in VRAN, the test animals had sibs in training data set, indicating some relationship
between test and training animals. Accuracy of EBV was measured by two definitions. One is the
correlation between EBV and corrected DMI305. Since the DMI data were collected from a long
period between 1991 and 2014, both EBV and DMI305 were adjusted for year mean in calculation
of the correlation to avoid that correlation was overestimated caused by genetic trend across years.
The other measure is model-based reliability which was estimated according to prediction error
variance derived from inverse of left-hand of mixed model equation.

Results and discussion

As shown in Table 1 and 2, accuracies of EBV for genotyped animals were higher than those for
non-genotyped animals even when using conventional BLUP. This could be explained by the fact
that genotyped animals were born in recent years during which more cows had DMI records, thus
there were more data information for predicting breeding values. As expected, accuracies of EBV
in validation scenario VRAN were higher than those in VFAM, because of the closer relationship
between test and training animals.

Table 1. Correlation between corrected DIM305 and EBV from univariate (MT1) and bivariate
(MT2) analyses using BLUP and ssGBLUP models.

Scenario Type of animal BLUP

MT1

BLUP

MT2

SSGBLUP

MT1

SSGBLUP

MT2

VFAM All 0.269 0.287 0.318 0.320

Genotyped 0.287 0.340 0.393 0.440

Non-genotyped 0.258 0.257 0.277 0.258

VRAN All 0.333 0.332 0.358 0.352

Genotyped 0.366 0.387 0.432 0.447

Non-genotyped 0.309 0.301 0.316 0.300



Although there were only 330 cows with genotypes, ssGBLUP led to higher accuracy of EBV
than conventional BLUP. According to Table 1, the improvement of accuracy was not only for
genotyped animals but also for non-genotyped animals in both scenarios, although there was a
larger improvement for genotyped animals than for non-genotyped animals. The gain from
genotype information in scenario VFAM was larger than in VRAN. This indicates that the benefit
from genomic prediction is larger for animals with a more distant relationship with the relatives
having phenotypic records. The scenario of VFAM could be consistent with the real life scenario in
cattle breeding where young bulls were selected before the daughters and sibs have records.
According to model-based reliability (Table 2), the improvement of EBV accuracy was only for
genotyped animals, and the gains from genotype information were not different in the two
validation scenarios.

Table 2. Model-based reliability of EBV from univariate (MT1) and bivariate (MT2) analyses using
BLUP and ssGBLUP models

Scenario Type of animal BLUP

MT1

BLUP

MT2

SSGBLUP

MT1

SSGBLUP

MT2

VFAM All 0.261 0.299 0.276 0.323

Genotyped 0.328 0.365 0.379 0.440

Non-genotyped 0.216 0.255 0.207 0.245

VRAN All 0.323 0.343 0.333 0.365

Genotyped 0.401 0.416 0.442 0.489

Non-genotyped 0.271 0.271 0.260 0.382

The gains from bivariate models applying information of milk yield were not consistent
between the two measures of accuracies. According to the correlation between the EBV and
DMI305, multiple-trait analysis increased accuracy of EBV only for the genotyped animals. For the
based reliability model, however, the bivariate model using information of milk yield largely
increased the reliability of EBV.

The above results confirm that genomic selection is a promising tool to selection for DMI. In
order to obtain a high accuracy of EBV for DMI to satisfy practical breeding, however, more DMI
data is required. A solution to overcome the costly-to-measure issue would be an international
collaboration so that phenotypic and genotypic information from several populations could be used
to predict genomic breeding values for DMI. Within this context, some international collaborative
studies using feed intake in Holsteins have shown the possibility to increase the accuracy of
genomic estimated breeding values for feed intake (de Haas et al., 2012, 2015). Using data on
individual daily DMI of Holstein cows and heifers from 10 populations, de Haas et al. (2015) have
shown that the accuracy of genomic prediction increases from 0.37 when performing within
country evaluation to 0.44 when applying a joint evaluation. It should be noted that there are still
some challenges to get large and well defined DMI data through international cooperation.

Conclusions

Even though we used a small reference population, genomic prediction using ssGBLUP improved
the accuracy of EBV for DMI. Current multiple-trait model using information of correlated trait
could slightly increase the prediction accuracy for DMI. To obtain a higher accuracy of EBV for



DMI, more data are required.
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