Genetic evaluation for saved feed and methane emission

Jan Lassen, VG
Rasmus Stephansen, Seges
Daniel Gordo, AU
Martin Lidauer, Luke
Anna Maria Leino, Luke
Gert Pedersen Aamand, NAV
Outline

• Feed Saved
 • Plan for a genetic evaluation (Gert)
 • Maintenance (Rasmus)
 • Feed intake (research farm data, and CFIT) (Jan)
 • Reliability – what can we expect? (Gert)

• Methane
 • Registration, genetics, impact on climate (Jan)
The overall aim

$\text{EBV}^{(\text{Saved Feed})} = V_1 \times \text{EBV(Maintenance)} + V_2 \times \text{EBV(Metabolic)}$

- Key data is cow weights from practice
- Key data is Feed intake from Research farms data and CFIT
Preliminary plan for publication of NAV Breeding values for Feed Saved

<table>
<thead>
<tr>
<th>Date</th>
<th>Published EBVs*</th>
<th>Phenotypes included</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2019</td>
<td>$EBV_{maintenance}$</td>
<td>Weight, conformation from practice</td>
<td>All 3 breeds</td>
</tr>
<tr>
<td>Aug/Nov 2019</td>
<td>$EBV_{metabolic}$</td>
<td>Feed intake, weight, yield from research farms</td>
<td>HOL, (RDC)</td>
</tr>
</tbody>
</table>

*Means also genomic breeding values

EBV for feed saved will not be included in NTM in 2019, but can be given as an extra information trait
Preliminary plan for publication of NAV Breeding values for Feed Saved

<table>
<thead>
<tr>
<th>Date</th>
<th>Published EBVs*</th>
<th>Phenotypes included</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2019</td>
<td>EBV\textsubscript{maintenance}</td>
<td>Weight, conformation from practice</td>
<td>All 3 breeds</td>
</tr>
<tr>
<td>Aug/Nov 2019</td>
<td>EBV\textsubscript{metabolic}</td>
<td>Feed intake, weight, yield from research farms</td>
<td>HOL, (RDC)</td>
</tr>
<tr>
<td>Nov 2019+</td>
<td>EBV\textsubscript{metabolic}</td>
<td>CFIT data</td>
<td>All 3 breeds</td>
</tr>
</tbody>
</table>

*Means also genomic breeding values

EBV for feed saved will not be included in NTM in 2019, but can be given as an extra information trait
The overall aim

\[\text{EBV}_{\text{(Saved Feed)}} = \text{V}_1 \times \text{EBV}_{\text{(Maintenance)}} + \text{V}_2 \times \text{EBV}_{\text{(RFI)}} \]
The core trait

- **Metabolic body weight** \((MBW = \text{body weight}^{0.75}) \)
- ~1 kg dry matter to maintain 100 kg body weight (~30% of the total energy requirement for a dairy cow)
Data sources

- A small proportion of the cows have scale/tape measurements (only in DNK and FIN)
- A larger proportion has conformation data
- Genetic correlation with body weight
Tape measurements (FIN data)

- Voluntary measurements in 25 % of the Finnish herds (~10% of the cows in Finland)
- Measured once per lactation (mostly) from 1990 and onwards
- Data from RDC and HOL
 - 700,000 cows in 1st parity
 - 440,000 cows in 2nd parity
 - 150,000 cows in 3rd parity
AMS scale (DNK data)

- Number of 1st parity cows
 - 59,000 HOL (2008-2018)
 - 4,400 RDC (2011-2018)
 - 3,800 JER (2011-2018)

- Repeated trait
 - Mean lactation body weight is calculated
 - Precorrection necessary
Conformation – indicator traits

- Conformation traits recorded in Denmark, Finland and Sweden
 - Stature, body depth, chest width
- Currently evaluated in NAV
 - 79,000 HOL 1st parity cows in 2017
 - 34,000 RDC 1st parity cows in 2017
 - 13,500 JER 1st parity cows in 2017
Genetic evaluation

Multiple-trait model with following traits:

- Metabolic body weight 1st parity (MBW 1)
- Metabolic body weight 2nd parity (MBW 2)
- Metabolic body weight 3rd parity (MBW 3)
- Conformation traits from 1st parity (indicator)
 - Stature
 - Body depth
 - Chest width
Heritabilities

- Tape is based on Finnish field data (RDC & HOL)
- Scale is based on Danish AMS data (HOL)

<table>
<thead>
<tr>
<th></th>
<th>Tape</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBW 1</td>
<td>0.46</td>
<td>0.58</td>
</tr>
<tr>
<td>MBW 2</td>
<td>0.51</td>
<td>0.55</td>
</tr>
<tr>
<td>MBW 3</td>
<td>0.56</td>
<td>0.54</td>
</tr>
</tbody>
</table>

- Approximately at the same level
Genetic correlations
- Between MBW traits
 • Based on 284 primiparous cows (Luke’s research herd Jokioinen)
 • MBW – tape
 • MBW – lac_avg (lactation average, similar to Danish AMS trait)
 • Genetic correlation >0.93
Genetic correlations
- Between MBW traits

- Based on Finnish field data (RDC & HOL)

<table>
<thead>
<tr>
<th>Traits</th>
<th>1st parity</th>
<th>2nd parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd parity</td>
<td>0.98</td>
<td>0.96</td>
</tr>
<tr>
<td>3rd parity</td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

- The same trait across parities
Genetic correlations
- Between MBW 1 and indicator traits

• Between MBW in 1st parity and indicator traits

<table>
<thead>
<tr>
<th>HOL</th>
<th>Stature</th>
<th>Body depth</th>
<th>Chest width</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBW 1</td>
<td>0.65</td>
<td>0.51</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Conclusion

• Strong genetic correlation between tape and AMS scale measurements

• MBW is a highly heritable trait

• MBW the same trait in different parties

• Conformation traits are good indicator traits
Perspectives

• Camera technology looks promising for prediction of body weight

• Some large herds might install scales for management purposes

• Use slaughter weight – not included to keep the evaluation simple
Residual feed intake (metabolic efficiency)

- What does it mean?

- Feed intake corrected for energy sinks:
 - Yield level
 - Body weight
 - Body weight chance
 - ...

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation
Database on Holstein

<table>
<thead>
<tr>
<th>Country</th>
<th># cows</th>
<th>DMI records</th>
<th>Yield records</th>
<th>Weight records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>900</td>
<td>58,000</td>
<td>58,000</td>
<td>56,000</td>
</tr>
<tr>
<td>Canada</td>
<td>500</td>
<td>28,000</td>
<td>33,000</td>
<td>3,000</td>
</tr>
<tr>
<td>USDA</td>
<td>700</td>
<td>20,000</td>
<td>20,000</td>
<td>9,000</td>
</tr>
<tr>
<td>CHE</td>
<td>100</td>
<td>800</td>
<td>2,000</td>
<td>1,100</td>
</tr>
<tr>
<td>UK</td>
<td>2,300</td>
<td>125,000</td>
<td>156,000</td>
<td>5,000</td>
</tr>
<tr>
<td>AUS</td>
<td>600</td>
<td>2,100</td>
<td>2,100</td>
<td>2,100</td>
</tr>
</tbody>
</table>

4,500 total cows with feed intake data
3,300 total cows genotyped
Research farm data

- Different diets and experiments
- Different production environments
- Hardly correlations of 1 between countries
Cattle Feed Intake
CFIT
System setup
Example of feed intake from a visit

Blue is higher

Red is deeper

Removed 14.39 l
Added 10.75 l
Total 3.64 l

Total is difference between red and blue
97 Jersey cows (19 cameras) measured for 14 days
Two consecutive milk recordings were used
Results

- Repeatability between weeks 0.84
- Repeatability between days 0.65
- $r_{FI, ECM} = 0.65$
Installation and test in 4 herds
Analysis on live data including live weight prediction
Dialogue with farmers on interface
Alarm diagnostics – when and when not
Economic benefits of having records
Status and plans installation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of herds with CFIT</td>
<td>1 JER</td>
<td>2 JER, 1 HOL, 1 RDC</td>
<td>2 JER, 2 HOL, 2 RDC</td>
<td>5 JER, 10 HOL, 5 RDC</td>
</tr>
<tr>
<td>Number of 1. lact cows with CFIT</td>
<td>40 JER</td>
<td>100 JER, 100 HOL, 50 RDC</td>
<td>150 JER, 200 HOL, 150 RDC</td>
<td>600 JER, 1200 HOL, 600 RDC</td>
</tr>
<tr>
<td>Number of cows in total with CFIT</td>
<td>100 JER</td>
<td>400 JER, 400 HOL, 200 RDC</td>
<td>600 JER, 800 HOL, 600 RDC</td>
<td>3000 JER, 6000 HOL, 3000 RDC</td>
</tr>
</tbody>
</table>
Reference population size, Jan. 2019

<table>
<thead>
<tr>
<th>Breed</th>
<th>Category</th>
<th>Maintenance* (weight data)</th>
<th>Metabolic (feed intake data)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phenotypes</td>
<td>Genotypes*</td>
</tr>
<tr>
<td>Holstein</td>
<td>Bulls >10 daughters</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>Cows</td>
<td>300,000</td>
<td>2,500</td>
</tr>
<tr>
<td>RDC</td>
<td>Bulls >10 daughters</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td>Cows</td>
<td>635,000</td>
<td>4500</td>
</tr>
<tr>
<td>Jersey</td>
<td>Bulls >10 daughters</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Cows</td>
<td>3,800</td>
<td><200</td>
</tr>
</tbody>
</table>

*estimates; ** genotypes on about 2/3 of the cows
How reliable will the Saved Feed breeding values be?

<table>
<thead>
<tr>
<th></th>
<th>Maintenance (weight data)</th>
<th>Metabolic (feed intake data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows with data</td>
<td>60%</td>
<td>20-30% (only research farm cows)</td>
</tr>
<tr>
<td>Bull with 20 daughters having data</td>
<td>90%</td>
<td>60% (very few bulls)</td>
</tr>
<tr>
<td>Heifer pedigree information in practice</td>
<td>30%</td>
<td><5%</td>
</tr>
<tr>
<td>Heifer/bull calf with genotype</td>
<td>50-55%</td>
<td>5-10%</td>
</tr>
</tbody>
</table>
How reliable will the Saved Feed breeding values be?

<table>
<thead>
<tr>
<th></th>
<th>Maintenance (weight data)</th>
<th>Metabolic (feed intake data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow having data</td>
<td>60%</td>
<td>20-30% (only research farm cows)</td>
</tr>
<tr>
<td>Bull with 20 daughters having data</td>
<td>90%</td>
<td>60% (very few bulls)</td>
</tr>
<tr>
<td>Heifer pedigree information in practice</td>
<td>30%</td>
<td><5%</td>
</tr>
<tr>
<td>Heifer/bull calf with genotype</td>
<td>50-55%</td>
<td>5-10% (HOL)</td>
</tr>
<tr>
<td>Comments</td>
<td>Jersey lower</td>
<td>HOL>RDC>(Jersey) CFIT</td>
</tr>
</tbody>
</table>
Methane emission

- Climate debate every day in all news media
- Anti-animal production agenda
- Agriculture is a part of the contribution to GHG emission
- Agriculture is also a part of the solution – but not all the solution!
Measuring
Results

• Data on Holstein (+3000 cows) and Jersey (+1200 cows)
• Heritability ~20%
• Genetic correlations (inaccurate)
 • Between Methane and Yield - positive (unfavorable)
 • Between Methane and other NTM traits - no unfavorable
Results

• Data collection in research projects still ongoing

• Quantification methods are equivalent to respiration chamber data but can be improved
Relationship between methane and DMI
Implementation?

- Possibilities for genetic ranking
- VERY low initial reliabilities (~10%)
- Routine recordings to get more data and make documentation
- Cost approx. 20 Euro per cow