Nordic Genetic Evaluation of Saved feed including use of CFIT data

Rasmus Bak Stephansen, SEGES Ulrik S. Nielsen, SEGES Jan Lassen, VG Daniel Gordo, AU Martin Lidauer, Luke Jukka Pösö, FABA Freddy Fikse, Växa Sverige Gert Pedersen Aamand, NAV

The overall aim of Saved feed

Saved feed

- Maintenance efficiency (Aug '19)
- Saved feed in NTM (Aug '20)
- Metabolic efficiency (Nov '20)

Data used for maintenance evaluation

Maintenance efficiency

Weight data

NAV

- Scale (90,000 cows)
- Tape (800,000 cows)
- Conformation (indicator)
 - Stature, body depth and chest width
 - Data from 3.5M cows

Genetic parameters Maintenance

- Maintenance
 - Heritability: 0.65 for HOL+RDC and 0.58 for JER
 - Genetic correlation across parties: highly (>0.98)
- Genetic correlation to indicator traits: moderate/ high (see Table)

HOL/RDC/JER	Stature	Body depth	Chest width
Maintenance	0.65-0.68	0.48-0.51	0.53-0.58

Genomic reliabilities Maintenance

Genomic reliabilities (pedigree + genomic information)

	All breeds
Milk yield traits	70%
Maintenance eff.	60%

Genetic trend for cows Maintenance

 Slightly negative trend for HOL and JER → more heavy cows

No trend for RDC

NAV

Metabolic efficiency – what is that?

Metabolic efficiency = observed feed intake – predicted feed intake

• Predicted feed intake is based on yield, maintenance, mobilization, etc.

Feed intake data for metabolic efficiency

- Nordic HOL (Foulum) | Repeated records from 1st to 3rd parity
 - Testing CFIT data
- HOL abroad (AUS, CAN, USA) | Repeated records from 1st to 6th parity
- Nordic RDC (Luke+CFIT) | Repeated records within 1st to 6th parity
 - CFIT data from February 2020 until December 2020
- Nordic JER (CFIT) | Repeated records from 1st to 6th parity
 - CFIT data from January 2019 until December 2020

		Nordic HOL	Abroad HOL	Nordic RDC	Nordic JER
		N lactations	N lactations	N lactations	N lactations
	1 st parity	753	962	810	298
	2 st parity	553	786	66	236
ΝΔ	3+ parity	341	465	84	404
	N cows Genotyped	799 436	1,581 1,450	907 462	550 512

Merge research and CFIT data

- Tested for RDC
 - Assumption: the same trait in Luke and CFIT
- Luke cows change very little as expected
- Reranking for CFIT RDC cows as expected
 - Cross validation between biggest Luke herd and CFIT shows a good predictability – indicate same trait is measured
- RDC CFIT data included in the February evaluation
- NAV Next step is HOL CFIT data

Genetic parameters Metabolic efficiency

Assumptions

- Heritability: 15% for all 3 breeds
 - Same trait across parities and within lactation
 - It is a rough assumption but a consequence of few data
- Assumptions are based on analysis and results from the Saved feed Group
- For the first time in NAV, a Single Step model is used to calculate GEBVs

Genomic reliabilities Metabolic efficiency

Extra reliability in addition to pedigree information

- Tested for production traits from research data
 - Finnish RDC data 310 cows, Lidauer, M.
 - EDGP HOL data 1,650 cows, Stephansen, R.S. & Nielsen, U.S.

	RDC	HOL
Metabolic eff.	1-3%	3-7%

More females in the reference population will increase genomic reliability

Genetic trend Metabolic efficiency

- No trend for any of the breeds
- Expected since the trait is unselected

Standardization of Metabolic eff.

- The aim is to standardize Metabolic eff.
 breeding values on maintenance scale
 - Genetic variation is assumed to be the same for Maintenance and Metabolic eff.
 - The genomic reliability is assumed to be 3%

Results from standardization

- Average and standard deviation for different groups
 - Candidates were born from 2017-2019

Breed	Animal group	N animals	Mean (SD) index
RDC	Candidate heifers	59,726	99.7 (2.3)
RDC	Candidate bulls	7,648	100.0 (2.2)
RDC	Bulls with offspring	308	98.6 (3.9)
HOL	Candidate heifers	118,500	100.0 (1.7)
HOL	Candidate bulls	9,838	100.0 (1.6)
HOL	Bulls with offspring	141	98.8 (5.1)
JER	Candidate heifers	32,749	100.3 (1.7)
JER	Candidate bulls	1,461	100.0 (1.7)
JER	Bulls with offspring	118	100.1 (2.2)

Effect of 1 index unit Saved feed

- The effect of 1 index unit is the same for maintenance and metabolic efficiency
 - RDC = 9.8 kg DMI per annual cow
 - HOL = 8.2 kg DMI per annual cow
 - JER = 6.7 kg DMI per annual cow
- Example for Saved feed:

 Offspring with parent average of 110 is expected to eat 70-100 kg less DMI in an average lactation

Correlations in Saved feed

- The correlation between the index for maintenance and metabolic eff. is close to 0
 - Expected from the definition of metabolic eff.
- Primarily, the maintenance breeding values influence the Saved feed Index
 - Caused by low reliability on metabolic eff. GEBVs

	RDC		HOL		JER	
	Saved feed	Maint.	Saved feed	Maint.	Saved feed	Maint.
Maintenance	0.98	-	0.98	-	0.97	-
Metabolic eff.	0.22	0.01	0.32	0.11	0.20	-0.05

Correlations between NTM sub-indices and metabolic eff.

- All correlations are close to 0 as expected with few feed intake data
 - Remember low reliability on GEBVs for metabolic eff.

Born 2017 & 2018	RDC	HOL	JER
N bulls	5187	6239	951
NTM	0.14	0.05	0.03
Y-index	0.00	-0.08	0.01
Fertility	0.10	0.15	0.02
Udder health	0.08	0.11	-0.01
Udder	0.10	-0.06	-0.04

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

Final remarks

- Both component traits of Saved feed are now available
- Selection for the Saved feed index will lead to:
 - More profitable cows
 - More efficient and climate friendly cattle
- With a higher reliability on metabolic eff. indices, we can expect bigger contribution to NTM
- Next steps
 - Test minimum data period required for evaluation
 - Include CFIT data in Holstein evaluation

