Approximating individual animal reliabilities in single-step genomic model

Hafedh Ben Zaabza¹, Matti Taskinen¹, Timo Pitkänen¹, Gert

Pedersen Aamand², Esa A. Mäntysaari¹ and Ismo Strandén¹

¹Natural Resources Institute Finland (Luke), Jokioinen, Finland ²NAV Nordic Cattle Genetic Evaluation, 8200 Aarhus N, Denmark

Introduction

- Calculation of individual animal reliabilities of genomic breeding values from singlestep genomic BLUP (ssGBLUP) requires an inversion of the coefficient matrix of the mixed model equations (MME).
- When the MME coefficient matrix is small, reliability can be computed by direct inversion of the matrix. When the matrix is large, the inversion is not possible, and <u>reliability</u> needs to <u>be approximated</u>.

Introduction

• Several approximation methods for animal models have been developed for the non-genomic evaluations.

 Only few approximation methods have been developed in <u>ssGBLUP genomic</u> <u>evaluation</u> (Misztal et al. 2013; Edel et al. 2019).

Aims

- Approximate the reliabilities <u>separately</u> for genotyped and non-genotyped animals.
- Compare the approximated reliabilities with corresponding reliabilities obtained from the inverse of the MME coefficient matrix (Exact animal and ssGBLUP models).

Models

Consider a univariate ssGBLUP model

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{W}\mathbf{u} + \mathbf{e},$$

MME are

$$\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{W} \\ \mathbf{W}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{W}'\mathbf{R}^{-1}\mathbf{W} + \mathbf{H}^{-1}\sigma_u^{-2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{b}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{W}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix},$$

Where
$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_w^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
, and $\mathbf{G}_w = (1 - w)\mathbf{G} + w\mathbf{A}_{22}$

Denote the MME coefficient matrix by C and its inverse matrix elements as

$$\mathbf{C}^{-1} = \begin{bmatrix} \mathbf{C}^{\mathbf{b}\mathbf{b}} & \mathbf{C}^{\mathbf{b}\mathbf{u}} \\ \mathbf{C}^{\mathbf{u}\mathbf{b}} & \mathbf{C}^{\mathbf{u}\mathbf{u}} \end{bmatrix},$$

and PEV_i = diagonal *i* in the prediction error variance (PEV) matrix C^{uu} . Reliability is

$$Rel_i = 1 - \frac{PEV_i}{H_{i,i}\sigma_u^2}$$

5

A recipe to approximate reliability in ssGBLUP

- 1. Calculate the amount of the <u>non-genomic</u> information in the GEBV of the <u>genotyped</u> animals:
 - 1. calculate the approximate reliability (r_a^2) in non-genomic animal model
 - 2. use r_a^2 to approximate effective record contributions (ERC_a), i.e., amount of non-genomic information
 - 3. Use reverse reliability estimation to calculate ERC_{rev} | r_a^2 for the genotyped animals
- 2. Calculate the total amount of information for the genotyped animals
 - 1. calculate reliability (r_g^2) of genomic breeding values by SNP-BLUP with weight ERC_{rev}
 - 2. calculate amount of information using ERC_g : $\text{ERC}_g = \frac{r_g^2}{1 r_g^2} \times \frac{(1 h^2)}{h^2}$
- 3. Increased information due to genomics for the genotyped animals: $ERC_{add} = ERC_g ERC_a$
- 4. Reliabilities $(r_{g,ngt}^2)$ for the non-genotyped animals can be approximated by blending the increased genomic information of the genotyped animals (ERC_{add}) in animal model.

Computational details

- Exact reliabilities by inverting the MME matrix were calculated using exa99 from MiX99
- Animal model reliabilities by Tier&Meyer (2004) were calculated using apax99 in MiX99
- Reverse realiablity estimates of ERCs were calculated using apax99 in MiX99
- SNP-BLUP reliabilities were calculated using snp_blup_rel program

Using Monte Carlo method to include polygenic effects in calculation of SNP-BLUP model reliability

H. Ben Zaabza,* © E. A. Mäntysaari, © and I. Strandén © Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland

Snp_blup_rel: software for calculating individual animal SNP-BLUP model reliabilities CAGRICULTURAL AND FOOD SCIENCE

H. Ben Zaabza et al. (2020) 29: 297–306

Data

• 19,757 genotyped animals in the Finnish Red dairy cattle

• Pedigree for the genotyped animals: 136,593 animals

• A set of 11,729 SNP markers which were selected from those used in the joint Nordic genomic evaluations

• We assumed the heritability of the trait to be 0.43

Comparison of reliabilities from exact ssGBLUP to

A) animal model with no-genomic information

B) approximations by weighted SNP-BLUP

Genotyped animals

Methods	correlation	max	MSE	b0	b1
Animal Model	0.945	0.51	0.0406	0.48	0.48
SNP-BLUP	0.988	0.08	0.0003	0.04	0.93

MSE: mean squared error b0, b1 regression of exact ssGBLUP reliabilities on AM and weighted-SNP-BLUP reliabilities

Comparison of reliabilities from exact ssGBLUP to

- A) animal model with no-genomic information
- B) SNP-BLUP blended to animal model

Non-genotyped animals

Methods	correlation	max	MSE	b0	b1
Animal Model	0.989	0.37	0.0014	0.03	0.96
SNP-BLUP blended to AM	0.995	0.25	0.0006	0.02	0.99

Exact ssGBLUP versus approximate SNP-BLUP reliabilities for the genotyped animals

ssGBLUP reliability, w=10%

Exact ssGBLUP compared with genomic reliability by SNP-BLUP blended to AM and AM reliabilities for the non-genotyped animals

Computing times

Methods	Peak memory (GB)	Wall clock time (h)
Animal Model	161.1	6.7
Exact ssGBLUP	161.1	6.8
ssGBLUP approximation	17.91	0.16

Conclusions

- The SNP-BLUP approximation gave a high correlation with ssGBLUP model reliability
- Results show good agreement between approximate and true values both for the genotyped and non-genotyped animals, although the approximate reliabilities deviated from the truth to both directions.
- The upward and downward biases could result from several <u>approximations and</u> <u>assumptions inherent in multi-step procedure</u>.
- The weighted SNP-BLUP method shows a good fit for the genotyped animals.
- The fit is likely dependent on the population structure.
- Testing the approximation in the multiple trait models is required.

Acknowledgments

We acknowledge Viking Genetics (Randers, Denmark) and Nordic Cattle Genetic Evaluation (Aarhus, Denmark) for providing the data!

Thank you!

