

Easy implementation of QP transformation in ssGTBLUP

M. Koivula¹, I. Strandén¹, G. P. Aamand², E. A. Mäntysaari¹

Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
NAV Nordic Cattle Genetic Evaluation, 8200 Aarhus N, Denmark

Introduction

an Rai Man Rainn Mar Martin Martin

- We have learned that the genetic groups have significant effect on genetic trends, and, in the single-step genomic BLUP model, to convergence of iterative solving
- Genetic groups can be included in the evaluation model as birth year effects, or regression coefficients as unknown parent contributions
- Computationally more efficient approach is to re-express the parental genetic groups as unknown parent groups (UPG) resulting from QP transformation

Aim: to show options for easy implementation of QP transformation in single-step evaluations

Data

- Official Holstein Nordic TD evaluation data for milk, protein and fat
- Genomic data:
 - 178 177 genotyped animals
- Genotyped animals were associated qith 428 out of 446 genetic groups in the pedigree

FULL TD data

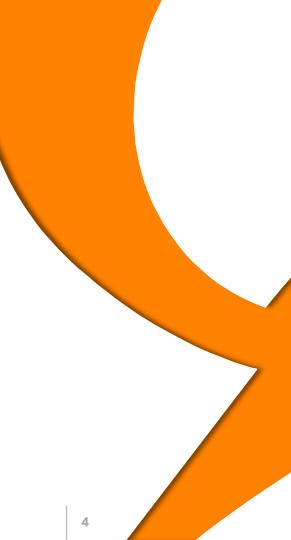
- 8.4 million animals with records, 10.4 million animals in pediree

REDUCED TD data for validation (four years of data reduction)

- 7.3 million animals with records

Methods

Genetic groups as QP transformation can be done alternative ways:


- 1. QP transformation for \mathbf{A}^{-1} only
- 2. QP transformation for \mathbf{A}^{-1} and $-\mathbf{A}_{22}^{-1}$
- 3. QP transformation for \mathbf{A}^{-1} and \mathbf{G}^{-1} and $-\mathbf{A}_{22}^{-1}$

Thus, we tested options;

ssGT_A=ssGTaBLUP with QP in A^{-1} onlyssGT_AA22=ssGTaBLUP with QP in A^{-1} and $-A_{22}^{-1}$ ssGT_H=ssGTaBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$ ssG_H=ssGBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$

□ All options included 30% of polygenic effect

□ ssGBLUP so called "original single-step model where **A**₂₂⁻¹ and **G**⁻¹ formed □ ssG**Ta**BLUP neither **A**₂₂⁻¹ and **G**⁻¹ are formed, and **G**⁻¹ replaced by **C**⁻¹-**T**′**T**

QP transformation

In original ssGBLUP

$$H_{*}^{-1} = \begin{bmatrix} A^{11} & A^{12} & -A^{11} Q_{1} + A^{12} Q_{2} \\ A^{21} & A^{22} & -A^{21} Q_{1} + A^{22} Q_{2} \\ -(Q'_{1} A^{11} + Q'_{2} A^{21}) & -(Q'_{1} A^{12} + Q'_{2} A^{22}) & Q' A^{-1} Q \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & (G_{w}^{-1} - A_{22}^{-1}) & (-G_{w}^{-1} - A_{22}^{-1}) Q_{2} \\ 0 & -Q'_{2} G_{w}^{-1} - A_{22}^{-1} & Q'_{2} G_{w}^{-1} - A_{22}^{-1} Q_{2} \end{bmatrix}$$

The matrix parts involving the pedigree relationship matrices (**A** and **A**₂₂) can be easily computed using pedigree information

However, this is impractical if we do ssGTBLUP

QP transformation

In practice, in ssGBLUP an augmented inverse genomic relationship matrix is computed

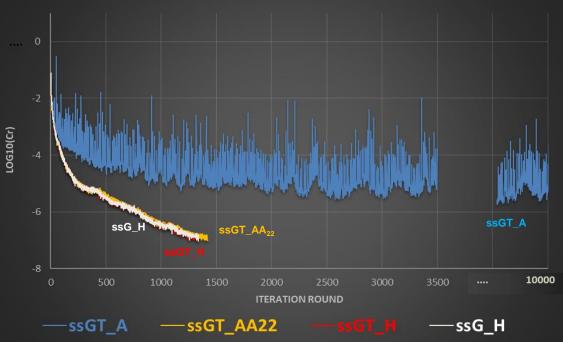
$$\mathbf{G}_{*}^{-1} = \begin{bmatrix} \mathbf{G}_{w}^{-1} & -\mathbf{G}_{w}^{-1}\mathbf{Q}_{2} \\ -\mathbf{Q}_{2}^{\prime}\mathbf{G}_{w}^{-1} & \mathbf{Q}_{2}^{\prime}\mathbf{G}_{w}^{-1}\mathbf{Q}_{2} \end{bmatrix}$$

which has elements for the genotyped animals and the genetic groups.

In ssGTBLUP, this can be done accordingly to relationship **T**-matrix by augmententing the new columns to original \mathbf{T}_w

Part for A_{22} can be done with an equivalent sparse formulation by reading the pedigree and including UPGs into the A_{22}

6


Convergence statistic in PCG according to log10(Cr < 10⁻⁷)

Convergence criteria was $C_r < 10^{-7}$ where Cr is a Euclidean norm of difference between the true right-hand side (RHS) of the MME and the one predicted by the current solutions

Relative to the norm of the true RHS.

QP transformation is needed in G^{-1} and/or $-A_{22}^{-1}$ for good convergence of the single-step model

ssGT_A	=ssG Ta BLUP with QP in A ⁻¹ only
ssGT_AA ₂₂	=ssG Ta BLUP with QP in A ⁻¹ and -A ₂₂ ⁻¹
ssGT_H	=ssG Ta BLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$
ssG_H	=ssGBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$

Correlation between GEBVs in full data analyses

Regression of (G)EBV on PA or GEBV_red

Mean correlations by birthyear between GEBVs from different singlestep methods

- Above diagonal genotyped reference bulls
- below diagonal genotyped validation bulls

ssGT A

ssGT H

ssG H

ssGT AA₂₂

	Trait	ssGT_A	ssGT_AA ₂₂	ssGT_H	ssG_H
ssGT_A	Milk		0.98	0.98	0.98
	Protein		0.98	0.98	0.98
	Fat		0.99	0.99	0.99
ssGT_AA ₂₂	Milk	0.95		1.00	1.00
	Protein	0.95		1.00	1.00
	Fat	0.95		1.00	1.00
ssGT_H	Milk	0.95	1.00		1.00
	Protein	0.94	1.00		1.00
	Fat	0.94	1.00		1.00
ssG_H	Milk	0.95	1.00	1.00	
	Protein	0.94	1.00	1.00	
	Fat	0.94	1.00	1.00	

=ssGTaBLUP with QP in A^{-1} only =ssGTaBLUP with QP in A^{-1} and $-A_{22}^{-1}$

=ssGTaBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$

=ssGBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$

Validation with GEBV Legarra-Reverter regression, 643 DFS bulls

EBVs and GEBVs were standardized with mean of cows born 2007

Validation bulls have at least 20 daughters in the full data and zero daughters in the reduced data

DFS= Denmark, Finland, Sweden

=ssGTaBLUP with QP in A^{-1} only =ssGTaBLUP with QP in A^{-1} and $-A_{22}^{-1}$

=ssGTaBLUP with QP in A^{-1} and G^{-1} and $-A_{22}^{-1}$

=ssGBLUP with QP in \mathbf{A}^{-1} and \mathbf{G}^{-1} and $-\mathbf{A}_{22}^{-1}$

	model	mean(Full-Red)	b ₁	R ²
Milk	PA	-129.81	0.77	0.22
	ssGT_A	-459.69	0.61	0.48
	ssGT_AA ₂₂	-364.58	0.86	0.64
	ssGT_H	-352.13	0.86	0.64
	ssG_H	378.49	0.85	0.64
Protein	PA	-0.71	0.68	0.18
	ssGT_A	-17.60	0.43	0.37
	ssGT_AA ₂₂	-13.38	0.79	0.58
	ssGT_H	-13.10	0.79	0.58
	ssG_H	-13.75	0.79	0.58
Fat	PA	-3.86	0.71	0.22
	ssGT_A	-21.83	0.54	0.47
	ssGT_AA ₂₂	-16.63	0.79	0.61
	ssGT_H	-16.59	0.79	0.60
	ssG_H	-17.20	0.78	0.60

Regression of (G)EBV on PA or GEBV_red

ssGT_A ssGT_AA₂₂ ssGT_H ssG_H

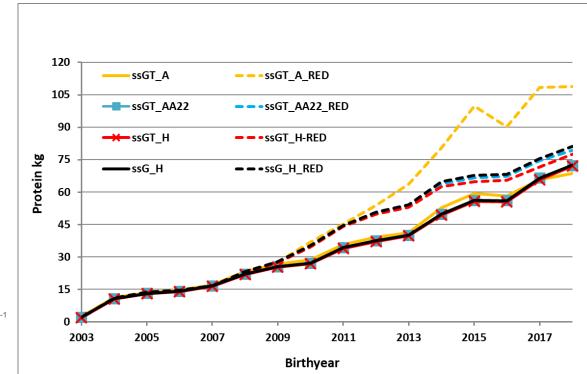
Validation with GEBV Legarra-Reverter regression, 643 DFS bulls

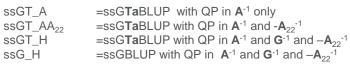
mean(Full-Red) R² model b₁ Milk PA -129.810.77 0.22 ssGT A -459.690.61 0.48 ssGT_AA₂₂ -364.58 0.86 0.64 ssGT H -352.13 0.86 0.64 ssG H --378.49 0.85 0.64 PA -0.710.68 0.18 Protein ssGT A -17.600.43 0.37 ssGT AA₂₂ -13.38 0.79 0.58 ssGT H -13.10 0.79 0.58 ssG H -13.75 0.79 0.58 Fat PA -3.86 0.71 0.22 ssGT A -21.830.54 0.47 ssGT AA₂₂ -16.63 0.61 0.79 ssGT H -16.590.79 0.60

-17.20

0.78

0.60

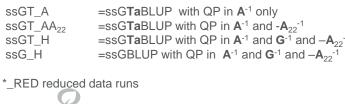

Regression of (G)EBV on PA or GEBV_red

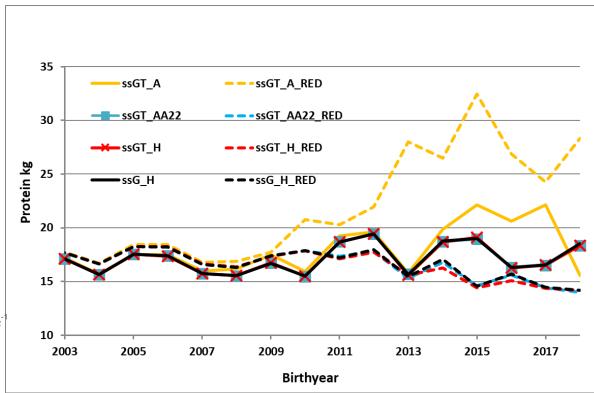

ssG H

ssGT_AA22, ssGT_H and ssG_H give similar regression results, but results from ssGT_A deviate from other because of poor convergence

 $\begin{array}{ll} ssGT_A & =ssGTaBLUP \mbox{ with } QP \mbox{ in } A^{-1} \mbox{ only} \\ ssGT_AA_{22} & =ssGTaBLUP \mbox{ with } QP \mbox{ in } A^{-1} \mbox{ and } -A_{22}^{-1} \\ ssGT_H & =ssGTaBLUP \mbox{ with } QP \mbox{ in } A^{-1} \mbox{ and } G^{-1} \mbox{ and } -A_{22}^{-1} \\ ssG_H & =ssGBLUP \mbox{ with } QP \mbox{ in } A^{-1} \mbox{ and } G^{-1} \mbox{ and } -A_{22}^{-1} \end{array}$

Genetic trend of protein (kg)




*_RED reduced data runs

Genetic SD trend of protein (kg)

- Genetic trends, as well as standard deviations of the GEBVs by birthyear, were the same for methods ssGT_AA₂₂, ssGT_H and ssG_H
 - Trends for ssGT_A deviated from others both in full and reduced runs

NATURAL RESOURCES INSTITUTE FINLAND

Conclusions

- 1. QP transformation is needed in A^{-1} and $-A_{22}^{-1}$ for a good convergence of the single-step model
- 2. Different methods to make QP transformation to genotyped animals give similar results
 - method with QP only to A⁻¹ gives unreliable result (because model did not converge)
- QP transformation is easy to implement also in the ssGTBLUP which with large genomic data is computationally efficient

